Y=x^3-3x Производная функции равна: y'=3x^2-3 Приравниваем производную к нулю: y'=0 3x^2-3=0 3(x^2-1)=0 x^2-1=0 x1=1 x2=-1 Отмечаем точки x=1 и х=-1на луче. Получаются три интервала: (минус бесконечность; -1], [-1;1] и [1; плюс бесконечность) Берём любую точку из каждого интервала и подставляем в производную (3x^2-3). Из интервала (минус бесконечность; -1] возьмём -2. 3*(-2)^2-3=3*4-3=12-3=9 9>0, значит, на этом интервале функция возрастает.
Из интервала [-1;1] возьмём 0. 3*0^2-3=-3 -3<0, значит, на этот отрезке функция убывает.
Из интервала [1; плюс бесконечность) возьмём 2. 3*2^2-3=12-3=9 9>0, значит, функция возрастает.
ответ: на (минус бесконечность; -1] функция возрастает, на [-1;1] убывает и на [1; плюс бесконечность) возрастает.
Y=x^3-3x Производная функции равна: y'=3x^2-3 Приравниваем производную к нулю: y'=0 3x^2-3=0 3(x^2-1)=0 x^2-1=0 x1=1 x2=-1 Отмечаем точки x=1 и х=-1на луче. Получаются три интервала: (минус бесконечность; -1], [-1;1] и [1; плюс бесконечность) Берём любую точку из каждого интервала и подставляем в производную (3x^2-3). Из интервала (минус бесконечность; -1] возьмём -2. 3*(-2)^2-3=3*4-3=12-3=9 9>0, значит, на этом интервале функция возрастает.
Из интервала [-1;1] возьмём 0. 3*0^2-3=-3 -3<0, значит, на этот отрезке функция убывает.
Из интервала [1; плюс бесконечность) возьмём 2. 3*2^2-3=12-3=9 9>0, значит, функция возрастает.
ответ: на (минус бесконечность; -1] функция возрастает, на [-1;1] убывает и на [1; плюс бесконечность) возрастает.
1) y=(12-x)√x на отрезке [1;9]
Находим первую производную функции:
y` = - √x + (12 - x)/2√x
или
y` = 1/2√x * (12 - 3x)
Приравниваем ее к нулю:
1/2√x * (12 - 3x) = 0
12 - 3x = 0
3x = 12
x = 4
Вычисляем значения функции на концах отрезка
f(4) = 16
f(1) = 11
f(9) = 9
ответ: fmin = 9, fmax = 16
2) y = 1/3cos3x на отрезке [0;π/2]
Находим первую производную функции:
y' = - sin(3x)
Приравниваем ее к нулю:
- sin(3x) = 0
x = 0
Вычисляем значения функции на концах отрезка
f(0) = 1/3
f(0) = 0.3333
f(π/2) = 0
ответ: fmin = 0; fmax = 1/3