М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vladagabriell
vladagabriell
15.01.2023 13:56 •  Алгебра

1)найдите наибольшее и наименьшее значения функции y=(12-x)√x на отрезке [1; 9] 2)y=1/3cos3x на отрезке [0; п/2]

👇
Ответ:
halex3456
halex3456
15.01.2023
Решение
1)  y=(12-x)√x на отрезке [1;9]
Находим первую производную функции:
y` = - √x + (12 - x)/2√x
или
y` = 1/2√x * (12 - 3x)
Приравниваем ее к нулю:
1/2√x * (12 - 3x) = 0
12 - 3x = 0
3x = 12
x = 4
Вычисляем значения функции на концах отрезка
f(4) = 16
f(1) = 11
f(9) = 9
ответ: fmin = 9, fmax = 16
2)  y = 1/3cos3x на отрезке [0;π/2]
Находим первую производную функции:
y' = - sin(3x)
Приравниваем ее к нулю:
- sin(3x) = 0
x = 0
Вычисляем значения функции на концах отрезка
f(0) = 1/3
f(0) = 0.3333
f(π/2) = 0
ответ: fmin = 0; fmax = 1/3
4,8(73 оценок)
Открыть все ответы
Ответ:
оксана731
оксана731
15.01.2023
Y=x^3-3x
Производная функции равна:
y'=3x^2-3
Приравниваем производную к нулю:
y'=0
3x^2-3=0
3(x^2-1)=0
x^2-1=0
x1=1
x2=-1
Отмечаем точки x=1 и х=-1на луче. Получаются три интервала: (минус бесконечность; -1], [-1;1] и [1; плюс бесконечность)
Берём любую точку из каждого интервала и подставляем в производную (3x^2-3).
Из интервала (минус бесконечность; -1] возьмём -2.
3*(-2)^2-3=3*4-3=12-3=9
9>0, значит, на этом интервале функция возрастает.

Из интервала [-1;1] возьмём 0.
3*0^2-3=-3
-3<0, значит, на этот отрезке функция убывает.

Из интервала [1; плюс бесконечность) возьмём 2.
3*2^2-3=12-3=9
9>0, значит, функция возрастает.

ответ: на (минус бесконечность; -1] функция возрастает, на [-1;1] убывает и на [1; плюс бесконечность) возрастает.
4,7(61 оценок)
Ответ:
Arsen00628
Arsen00628
15.01.2023
Y=x^3-3x
Производная функции равна:
y'=3x^2-3
Приравниваем производную к нулю:
y'=0
3x^2-3=0
3(x^2-1)=0
x^2-1=0
x1=1
x2=-1
Отмечаем точки x=1 и х=-1на луче. Получаются три интервала: (минус бесконечность; -1], [-1;1] и [1; плюс бесконечность)
Берём любую точку из каждого интервала и подставляем в производную (3x^2-3).
Из интервала (минус бесконечность; -1] возьмём -2.
3*(-2)^2-3=3*4-3=12-3=9
9>0, значит, на этом интервале функция возрастает.

Из интервала [-1;1] возьмём 0.
3*0^2-3=-3
-3<0, значит, на этот отрезке функция убывает.

Из интервала [1; плюс бесконечность) возьмём 2.
3*2^2-3=12-3=9
9>0, значит, функция возрастает.

ответ: на (минус бесконечность; -1] функция возрастает, на [-1;1] убывает и на [1; плюс бесконечность) возрастает.
4,4(10 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ