Распишем формулу, с которой можно рассчитать квадрат расстояния от точки (2; 0,5) до точки с координатами (х; х^2). Почему квадрат? Просто чтобы не париться каждый раз писать значок квадратного корня и не усложнять потом нахождение производной - ведь функция х^2 возрастает на положительном участке числовой оси, т.е. если квадрат расстояния будет минимальным, то и само расстояние тоже будет минимальным. Итак, расписываем, чему равен квадрат расстояния:
Найдем производную, приравняем ее к нулю и решим получившееся уравнение, тем самым определим критическую точку (или критические точки):
Уравнение производной имеет только один корень, т.е. у функции есть лишь одна критическая точка. Исследуем промежутки монотонности: при х<1 f'(x)<0, функция убывает; при х>1 f'(x)>0, функция возрастает; это означает, что в точке х=1 находится минимум функции. Итак, мы нашли точку параболы у=х^2, расстояние от которой до заданной точки минимально. Это точка с координатами х=1; у=1.
Пусть х га - площадь, которую тракторист планировал вспахивать за день. Тогда х + 6 га - площадь, которую вспахивал тракторист в действительности. По условию задачи, площадь поля = 224 га, следовательно, по плану тракторист должен был завершить работу за 224 : х дней; в условии задачи также указано, что работа была завершена на 12 дней раньше срока. Составим уравнение:
(см. приложенное фото)
Решив уравнение, находим, что тракторист планировал вспахивать по 8 га в день. Теперь определим, за сколько дней тракторист вспахал поле в действительности:
d=-8,3-(-10,2)=1,9
a₁+d*(n-1)>0
-10,2+1,9*(n-1)>0
1,9n-1,9>10,2
1,9n>12,1 I÷1,9
n>6,37 ⇒ n=7
a₇=-10,2+1,9*(7-1)=-10,2+1,9*6=-10,2+11,4=1,2
ответ: n=7, a₇=1,2.