М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kurstak77
kurstak77
28.06.2022 01:43 •  Алгебра

Запишите числа в порядке возрастания: sin(π/3); sin(7π/5); sin(2π/5); sin(6π/7)

👇
Ответ:
straza982
straza982
28.06.2022
\sin \frac{ \pi }{3}; \sin \frac{ 7\pi }{5}; \sin \frac{2 \pi }{5}; \sin \frac{ 6\pi }{7}

Числа \sin \frac{ \pi }{3}; \sin \frac{2 \pi }{5}; \sin \frac{ 6\pi }{7} положительны, так как синус в 1 и 2 четвертях положителен. Число \sin \frac{ 7\pi }{5} отрицательное, так как синус в 3 четверти отрицателен. Значит, \sin \frac{ 7\pi }{5} - наименьшее число.

Запишем оставшиеся числа, при необходимости преобразовав их так, чтобы под знаком синуса находился угол 1 четверти:
\sin \frac{ \pi }{3}; \sin \frac{2 \pi }{5}; \sin \frac{ 6\pi }{7} =\sin( \pi - \frac{ \pi }{7})=\sin \frac{ \pi }{7}

При увеличении аргумента синуса от 0 до \frac{ \pi }{2} значение синуса также возрастает от 0 до 1. Значит, осталось расположить аргументы синусов в порядке возрастания.

\frac{ \pi }{3}; \frac{ 2\pi }{5}; \frac{ \pi }{7}
Приведем числа к наименьшему общему знаменателю 3\cdot5\cdot7=105:
\frac{ \pi }{3} =\frac{ 35\pi }{105}
\frac{ 2\pi }{5} =\frac{ 42\pi }{105}
\frac{ \pi }{7} =\frac{ 15\pi }{105}
Значит, \frac{ \pi }{7} \ \textless \ \frac{ \pi }{3} \ \textless \ \frac{ 2\pi }{5}
Тогда, \sin\frac{ \pi }{7} \ \textless \ \sin\frac{ \pi }{3} \ \textless \ \sin \frac{ 2\pi }{5}

Учитывая ранее выявленное отрицательное число \sin \frac{7 \pi }{5} и равенство \sin \frac{6 \pi }{7} =\sin \frac{ \pi }{7} получаем цепочку:
\sin \frac{ 7\pi }{5}; \sin \frac{ 6\pi }{7}; \sin \frac{ \pi }{3}\sin \frac{2 \pi }{5}
4,5(84 оценок)
Открыть все ответы
Ответ:
Tumkanator
Tumkanator
28.06.2022
Дано уравнение:
x=−7x+40x−10
Домножим обе части ур-ния на знаменатели:
-10 + x
получим:
x(x−10)=1x−10(−7x+40)(x−10)
x(x−10)=−7x+40
Перенесём правую часть уравнения в
левую часть уравнения со знаком минус.

Уравнение превратится из
x(x−10)=−7x+40
в
x(x−10)+7x−40=0Раскроем выражение в уравнении
x(x−10)+7x−40=0Получаем квадратное уравнение
x2−3x−40=0
Это уравнение вида
a*x^2 + b*x + c.
Квадратное уравнение можно решить
с дискриминанта.
Корни квадратного уравнения:
x1=D‾‾√−b2a
x2=−D‾‾√−b2a
где D = b^2 - 4*a*c - это дискриминант.
Т.к.
a=1
b=−3
c=−40
, то
D = b^2 - 4 * a * c =
(-3)^2 - 4 * (1) * (-40) = 169
Т.к. D > 0, то уравнение имеет два корня.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
или
x1=8
x2=−5

ответ: x=-5
4,6(59 оценок)
Ответ:
bahriddinJoN2085
bahriddinJoN2085
28.06.2022

Решим задачу на движение по воде

Дано:

t(по течению) = 2 ч

t(против течения)=3 ч

v(собств.)=18,6 км/ч

v(теч.)=1,3 км/ч

Найти

S=? км

Решение

1) Найдём скорость катера против течения реки:

v(против течения)=v(собственная) - v (течения реки)=18,6-1,3=17,3 (км/час)

2) Катер плыл 3 часа против течения со скоростью 17,3 км/час. Найдём расстояние, которое катер проплыл против течения:

S(расстояние)=v(скорость)×t(время)

S(против течения)=17,3×3= 51,9 (км)

3) Найдём скорость катера по течению:

v(по течению)=v(собственная) + v (течения реки)=18,6+1,3=19,9 (км/час)

4) Катер плыл 2 часа против течения со скоростью 19,9 км/час. Найдём расстояние, которое катер проплыл по течению:

S(расстояние)=v(скорость)×t(время)

S(по течению)=2×19,9=39,8 (км)

5) Расстояние за 5 часов равно:

S=S(против течения)+S(по течению)=51,9+39,8=91,7 (км)

ОТВЕТ: катер за 5 часов проплыл расстояние 91,7 километров.

КРАТКО

Решим данную задачу по действиям с пояснениями.

1) 18,6 + 1,3 = 19, 9 километров в час - скорость катера по течению реки, так как собственная скорость катера 18,6 километров в час, а скорость течения реки 1,3 километров в час;

2) 18,6 - 1,3 = 17, 3 километров в час - скорость катера против течению реки, так как собственная скорость катера 18,6 километров в час, а скорость течения реки 1,3 километров в час;

3) 3 * 17,3 = 51,9 километров - расстояние, которое проплыл катер против течения реки;

4) 2 * 19,9 = 39,8 километров - расстояние, которое проплыл катер по течения реки;

5) 51,9 + 39,8 = 91,7 километров - такой путь проплыл катер.

ответ: 91,7 километров.

4,4(61 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ