Решение: 1) Область определения: D(y) x²-2x≠0 (-∞;0) (0;2) (2;∞) 2) Множество значений функции: (-∞;∞) 3) Проверим является функция четной или нечетной: y(x)=(x-1)/(x²-2x) y(-x)=(-x-1)/(x²+2x), так как y(-x)≠-y(x) и y(x)≠y(-x), то функция не является ни четной ни не четной. 4) Найдем нули функции: у=0, получаем х-1=0; х=1 Итак график пересекат ось абсцисс в точке (1;0) 5) Найдем точки экстремума и промежутки возрастания и убывания: y'=(x²-2x-(2x-2)(x-1))/(x²-2x)²=(-x²+2x-2)/(x²-2x)² ; y'=0 -x²+2x-2=0 уравнение не имеет корней, следовательно точей экстремума функция не имеет. Так как y'< 0 на всей области определения, то функция убывает. 6) Найдем точки перегиба и промежутки выпуклости функции: y"=((2-2x)(x²-2x)²-2(x²-2x)(2x-2)(2x-x²-2))/(x²-2x)^4=(2x³-6x²+6x-4)/(x²-2x)³; y"=0 2x³-6x²+6x-4=0 (x-1)(x²-2x+4)=0 x=1 Так как промежутках (-∞;0) (0;1) y"< 0, то на этих промежутках график направлен выпуклостью вверх Так как на промежутках (1;2) (;∞) y"> 0, то на этих промежутках график направлен выпуклостью вниз. Точка х=1 является точкой перегиба функции. у (1)=0 7) Найдем асимптоты функции: а) вертикальные: lim (при х->0-) (x-1)/(x²-2x)=-∞ lim (при х->0+) (x-1)/(x²-2x)=∞ следовательно прямая х=0 является вертикальной асимптотой. lim (при х->2-) (x-1)/(x²-2x)=-∞ lim (при х->2+) (x-1)/(x²-2x)=∞ следовательно прямая х=2 является вертикальной асимптотой. б) наклонные у=kx+b k=lim (при x->∞) y(x)/x=lim (при x->∞) (x-1)/(x³-2x²)=0 b=lim (при x->∞) (y(x)-kx)=lim (при x->∞) (x-1)/(x²-2x)=0 следовательно прямая у=0 является горизонтальной асимптотой: 8) Все строй график!
Переписывая уравнение в виде y=-(x-2)²+3=-x²+4x-1, замечаем, что график представляет собой квадратическую параболу. Так как коэффициент при x² равен -1<0, то ветви параболы направлены вниз. Первый член -(x-2)² обращается в 0 лишь при x=2, а пи других значениях х он отрицателен. Поэтому точка x=2 является вершиной параболы, в которой функция достигает своего наибольшего значения Ymax=y(2)=-2²+4*2-1=3. То есть координаты вершины есть (2;3). Чтобы найти координаты точек пересечения параболы с осью ОХ, надо решить уравнение x²-4x+1=0. Находим дискриминант D=(-4)²-4*1*1=12=(2√3)². Тогда x1=(4+2√3)/2=2+√3, x2=(4-2√3)/2=2-√3. Значит, (2+√3;0) и (2-√3;0) - координаты точек пересечения параболы с осью ОХ. Отсюда ясно, что если с>3, то прямая y=c не пересекает параболу, при c=3 прямая y=3 имеет с параболой одну общую точку - вершину параболы. А при c<3 прямая пересекает параболу в 2 точках. ответ: при c<3.
получим...