1.
1)
38² - 64 = 38² - 8² = (38 - 8)(38 +8) = 30 * 46 = 1380,
2.
1)
2в² - 18 = 2 * (в² - 9) = 2 * (в - 3)(в + 3),
3)
81х² - 18ху + у² + 63х - 7у = (81х² - 18ху + у²) + (63х - 7у) =
= (9х - у)² + 7*(9х - у) = (9х - у)(9х - у + 7),
4)
m² + n² + 2mn = (m + n)².
3.
а)
(8 - 2n)(8 + 2n) + (9 + 2n)² - 64 = 64 - 4n² + 81 + 36n + 4n² - 64 =
= 36n + 81 = 9(4n + 9),
б)
(3х - 8)² + (4х - 8)(4х + 8) = 9х² - 48х + 64 + 16х² - 64 = 25х² - 48х,
при х=-2:
25 * (-2)² - 48 * (-2) = 100 + 96 = 196,
4.
1 число - х,
2 число - (х+2),
(х+2)² - х² = 188,
х² + 4х + 4 - х² = 188,
4х = 184,
х = 46 - 1 число,
х+2 = 46+2 = 48 - 2 число
6 (км/час) - скорость первого туриста.
5 (км/час) - скорость второго туриста.
Объяснение:
Из пунктов А и В, расстояние между которыми 33 км, выходят одновременно два туриста и встречаются через 3 часа.
Найти скорость каждого туриста, если турист, вышедший из пункта А на 3 км больше.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х – скорость первого туриста.
у - скорость второго туриста.
3*х – расстояние первого туриста.
3*у – расстояние второго туриста.
Составить систему уравнений согласно условию задачи:
3х+3у=33
3х-3у=3
Разделить оба уравнения на 3 для упрощения:
х+у=11
х-у=1
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х=11-у
11-у-у=1
-2у=1-11
-2у= -10
у= -10/-2
у=5 (км/час) - скорость второго туриста.
х=11-у
х=11-5
х=6 (км/час) - скорость первого туриста.
Проверка:
6*3+5*3=18+15=33;
6*3-5*3=18-15=3, верно.
2) a /( ab - a^2 ) = a / ( a( b - a )) = a /( - a( a - b ))
3) ( a /(( a - b )( a + b )) / ( a /( -a( a - b )) = ( - a / ( a + b )
4) a = 0,7 ; b = - 2,1
- 0,7 / ( 0,7 - 2,1 ) = - 0,7 / ( - 1,4 ) = 0,5
ответ 0,5