Решим неравенства: (1) x > 35 (2) x ≤ 99 (3) x > 8 (4) x ≥ 10 (5) x > 5
Если верно неравенство (1), то автоматически верны неравенства (3), (4) и (5), и верных неравенств не меньше 4, хотя по условию их только 3. Значит, неравенство (1) неверно, x ≤ 35, откуда следует, что неравенство (2) верно.
Среди оставшихся неравенств (3), (4) и (5) должны быть два верных и одно неверное. Если верно неравенство (4), то сразу же верны и остальные неравенства, чего быть не должно, поэтому неравенство (4) неверно, а неравенства (3) и (5) верны.
Системе неравенств 5 < 8 < x < 10 ≤ 35 ≤ 99 удовлетворяет единственное натуральное число x = 9.
Решим неравенства: (1) x > 35 (2) x ≤ 99 (3) x > 8 (4) x ≥ 10 (5) x > 5
Если верно неравенство (1), то автоматически верны неравенства (3), (4) и (5), и верных неравенств не меньше 4, хотя по условию их только 3. Значит, неравенство (1) неверно, x ≤ 35, откуда следует, что неравенство (2) верно.
Среди оставшихся неравенств (3), (4) и (5) должны быть два верных и одно неверное. Если верно неравенство (4), то сразу же верны и остальные неравенства, чего быть не должно, поэтому неравенство (4) неверно, а неравенства (3) и (5) верны.
Системе неравенств 5 < 8 < x < 10 ≤ 35 ≤ 99 удовлетворяет единственное натуральное число x = 9.
x²-10x+16=(x-2)(x-8) (по т. Виета)
{x₁*x₂=16
{x₁+x₂=10 => x₁=2; x₂=8
x³|(x-2)(x-8)|>0
28
1) x<2 - + - +
x³(x-2)(x-8)>0 028
x∈(0;2)
2)2<x<8 + - + -
-x³(x-2)(x-8)>0 028
x∈(2;8)
3) x>8 - + - +
x³(x-2)(x-8)>0 028
x∈(8;+∞)
Решение неравенства: х∈(0;2)U(2;8)U(8;+∞)
Целые решения на промежутке (-1;7]: {1; 3;4;5;6;7}
ответ: 6 целых решений