Объяснение При пересечении параллельных прямых секущей образуется 8 углов двух величин:
соответственные углы
∠1 = ∠5
∠3 = ∠7,
а так как ∠1 = ∠3 как вертикальные, то
∠1 = ∠5 = ∠3 = ∠7 = х
и соответственные углы
∠2 = ∠6
∠4 = ∠8,
а так как ∠2 = ∠4, как вертикальные, то
∠2 = ∠6 = ∠4 = ∠8 = у
Сумма односторонних углов равна 180°, например
∠3 + ∠6 = 180°
Т. е. х + у = 180°.
Углы, о которых идет речь в задаче, не равны, значит их сумма 180°:
х - меньший угол, у = 5х
x + 5x = 180°
6x = 180°
x = 30°
∠1 = ∠5 = ∠3 = ∠7 = 30°
у = 180° - 30° = 150°
∠2 = ∠6 = ∠4 = ∠8= 150°
1. −(a+b)−(c−d)−(e−f)=−a-b−c+d−e+f
2. (8ab+3b)−(6ab−3b)+4a=8ab+3b−6ab+3b+4a=2ab+6b+4а
если a=6 и b=3. 2*6*3+6*3+4*6=36+18+24=78
3. 0,2x²+0,04y² +0,16x²−0,07y²=0,36x²-0,03y²
(0,2x²+0,04y²) -(0,16x²−0,07y²)=0,2x²+0,04y²-0,16x²+0,07y=0.11у²+0.04х²
4. (9a−13b+29c)−(−24a+29b−24c) =9a−13b+29c+24a-29b+24c=33а-42b+53с
5. (637d−214d²)+(114d²−137d)= 637d−214d²+114d²−137d=500d-100d²
6. 16−(7h+5)+4= 16−7h-5+4=15−7h
7. (x²−4x+3)−(3x−2x²+4)=x²−4x+3−3x+2x²-4=3х²-7х-1; если x=2.
3х²-7х-1=3*2²-7*2-1=12-14-1=-3
8. x³+3x²−x+4x³+2x²−x +5x²−3x³+4x =2x³+10x²+2х
9. это 42, т.к. 42-24=18
60*2+2x=200
120+2x=200
2x=200-120
2x=80:2
x=40