1) sin4x + sin3x + sin2x = 0 Преобразуемой первое и последнее слагаемое по формуле суммы синусов 2sin[(4x + 2x)/2]cos[4x - 2x]/2] + sin3x = 0 2sin3xcosx+ sin3x = 0 sin3x(2cosx + 1) = 0 sin3x = 0 3x = πn, n ∈ Z x = πn/3, n ∈ Z 2cosx + 1 = 0 cosx = -1/2 x = ±2π/3 + 2πk, k ∈ Z ответ: x = πn/3, n ∈ Z; ±2π/3 + 2πk, k ∈ Z.
2) 2sin²x + 3sinxcosx + cos²x = 0 |:cos²x 2tg²x + 3tgx + 1 = 0 2tg²x + 2tgx + tgx + 1 = 0 2tgx(tgx + 1) + (tgx + 1) = 0 (2tgx + 1)(tgx + 1) = 0 2tgx + 1 = 0 tgx = -1/2 x = arctg(-1/2) + πn, n ∈ Z. tgx + 1 = 0 tgx = -1 x = -π/4 + πk, k ∈ Z. ответ: arctg(-1/2) + πn, n ∈ Z; -π/4 + πk, k ∈ Z.
В каждом часе 6 промежутков по 10 мин, вероятность того, что А прийдёт в определенный промежуток времени 1/6, так и для другого, но к примеру А на первые 10 мин, и второй на первые 10 мин=1/6*1/6; так же на вторые 10 мин вероятность встречи 1/6*1/6 и так для третьего, четвортого, пятого и шестого десятка минут соответственно( мы не считаем, что один приходит, когда другой уходит) прпросуммируем результат
то-есть 1/6 сдесь задача аналогична тому, с кокой вероятностью выпадет на двух игральных костях две одинаковых цифры к примеру для шестёрок 1/36, для пятёрок 1/36,и т.д., всего 6, просуммировав, получим 1/6