1б) √0,17 > 0,4.
1в) √2,3 < √2 1/3.
2а) -1; -0,5; √0,2; √0,25; 0,7.
2б) 1/3; √2/9; √0,4; 1,8; √3 1/3.
Объяснение:
1б) √0,17 и 0,4
√0,17 и √0,16
0,17>0,16 , значит √0,17 > √0,16 и √0,17 > 0,4.
1в) √2,3 и √2 1/3
√2 3/10 и √2 1/3
√2 9/30 и √2 10/30
2 9/30 < 2 10/30, значит √2 9/30 < √2 10/30 и √2,3 < √2 1/3.
2а) 0,7; -1; √0,2; -0,5; √0,25
√0,49; -1; √0,2; -0,5; √0,25
т.к. 0,2<0,25<0,49, то √0,2 < √0,25 < √0,49
-1 < -0,5 < √0,2 < √0,25 < √0,49
-1 < -0,5 < √0,2 < √0,25 < 0,7.
ответ: -1; -0,5; √0,2; √0,25; 0,7.
2б) √0,4; 1/3; √2/9; √3 1/3; 1,8
√2/5; √1/9; √2/9; √3 3/9; √3,24
√2/5; √1/9; √2/9; √3 3/9; √3 6/25
√90/225; √25/225; √50/225; √3 75/225;√3 54/225
т.к. 25/225 < 50/225 < 90/225 < 3 54/225 < 3 75/225, то
√25/225 < √50/225 < √90/225 < √3 54/225 < √3 75/225
1/3 < √2/9 < √0,4 < 1,8 < √3 1/3.
ответ: 1/3; √2/9; √0,4; 1,8; √3 1/3.
Два последних по списку выражения.
Объяснение:
1. (-1) в (-4) степени: отрицательное основание (-1) в четной степени будет положительным, а 1 в любой степени равен 1, так что 1
(-1) в (-3) степени: отрицательное основание (-1) в нечетной степени будет отрицательным, а 1 в любой степени равен 1, так что -1.
1 - (-1) = 1+1 = 2.
2. (-1) в 6 степени: -1 в четной степени будет просто 1, поскольку степень четная.
(-1) в 8 степени: то же самое, 1.
1+1=2.
3. (-1) в (-6) степени: отрицательное основание в четной степени положительно, значит просто 1.
(-1) в 8: было, 1.
1+1=2.
4. (-1) в 7: отрицательное основание в нечетной степени отрицательно, то есть -1.
1 в 7 степени: тут думаю все понятно, просто единица и просто в 7 степени, 1.
-1+1=0
5. (-1) в 4 степени: было подобное, 1.
(-1) в 9 степени: подобное тоже было, -1.
1+(-1)= 1-1 = 0.