Объём работы положим равным единице, скорость (производительность) первого равна v1, второго v2. Условие про разницу в один день: (1/v1) + 1 = 1/v2. Условие про совместную работу: (v1+v2)*1=5/6. Решаем эту систему. Из второго уравнения выражаем v1=(5/6)-v2 и подставляем в первое уравнение. После упрощений получаем квадратное уравнение относительно v2: 6(v2)^2 -17v2+5=0, решаем его стандартно и получаем два корня: v2=2,5 или второй корень v2=1/3. Теперь для каждого из этих корней надо найти ему пару - то есть скорость первого трактора. Используем формулу (была написана выше) v1=(5/6)-v2 и получаем в первом случае v1=-5/3 - не подходит, так как отрицательное число (получается, что первый трактор не распахивает поле, а запахивает его обратно), а для второго корня (v2=1/3) получаем v1=1/2. Таким образом, время второго равно 1/v2=3 дня. Проверка: в исходное условие (v1+v2)*1=5/6 подставляем v1 и v2 и получаем верное равенство.
Если примем,что равно нулю,то отсюда: cosx-√3/2=0 cosx=√3/2 x=плюс минус π/6 + 2πn,n∈Z Это решение уравнения. Ищем корни,для этого подставляем это решение в промежуток от [0;3 пи]. 0≤плюс минус π/6 + 2πn≤3π переносим пи деленное на 6 влево и вправо,выражаем n: так как мы брали n только четные,минус пропадал,то решений нет. Аналогично повторяем со второй частью,только n берем нечетные,т е в решении минус сохраняется: тоже нет решений. Итог:это уравнение не имеет решений либо просто оно неверно написано.
- константа выносится за знак производной:
- производная линейной функции:
- производная степенной функции:
- производная сложной функции: