Щоб знайти найбільше та найменьше значення функції нам отрібено знайти її екстремуми, та значення функції у них та кінцях заданого інтервалу Знвйдемо похіднуфункції Прирівнюємо похідну к нолю та розвязуємо рівняння Отримали дві точки: 0 та 2, Накреслити ось Ох, відітити на ній точки 0 та 2, в наслідок чого, ця ось поділиться на три поміжка 1. (- неск;0), 2. [0;2], 3.(2; неск) Пперевіримо знак похідної на кожному з цих проміжків 1. (- неск;0) -1:3*(-1)^2-6*(-1)=,3*1+6=3+6=9, >0 2. [0;2], 1: 3*1^2-6*1=,3-6=-3, <0 3.(2; неск) 3: 3*3^2-6*3=,3*9-18=27-18=9, >0 Отже юбачимо що точки 0 та 2 є очками екстремуму функції, тепер щоб знайти найбільше та найменше значення подставимо ці точки та кінці проміжку, на якому виконумо обічисленя, у функцію та зннайдемо її значення Відповідь: найбільше значення функції знаходиться в точках х=0, та х=3 й дорівнює 0, а найменьше значення функції знаходиться в точці х=2 й дорівнює -4
Объяснение:
√(2 7/9) * √(7,29) + √(12 5/6) : √(1 40/81) =
= √(25/9) * 2,7 + √(77/6) : √(121/81) = (5/3)*3*0,9 + √(77/6) * 9/11 =
= 5*0,9 + √7*√11*9 / (√6*11) = 4,5 + √(7*27) / √(6*11) = 4,5 + √(63/22)