Объяснение:
Доказательство от противного.
Предположим что существует рациональное число, квадрат которого равен 3
пусть это число p/q , где p,q∈Z; q≠0
тогда (p/q)²=3
p²/q²=3
p²=3/q²
p=(√3)/q
√3 - это иррациональное число и (√3)/q также является иррациональным числом, так как иррациональное делить на целое =иррациональное
⇒ p иррациональное число что противоречит условию p,q∈Z
⇒ предположение что существует рациональное число, квадрат которого равен 3 неверно
⇒ не существует рациональное число, квадрат которого равен 3
x^2+2x=x^2+5x-30
x^2-x^2+2x-5x=-30
-3x=-30
x=10
2.
3x-2x^2+2x=14-2x^2
-2x^2+2x^2+3x+2x=14
5x=14
x=2.8