Запишем формулу: P=m/n, где m – число исходов, благоприятствующих осуществлению события X, а n – число всех равновозможных элементарных исходов.
Для начала определим вероятность выпадения какого-либо числа при одном броске. Определённое число выпадает одно, а всего исходов может быть 6 (6 граней кубика). Значит, вероятность выпадения какого-либо числа = 1/6.
Так как бросков мы делаем 2, количество возможных результатов возводится во 2-ю степень, и вероятность выпадения какого-либо числа уже = 1 / 6 × 6 = 1/36. В последующем, мы будем домножать числитель на количество удовлетворяющих нас результатов.
Сумма выпавших очков делится на 5 при следующих результатах
1) 1 и 4 (=5)
2) 2 и 3 (=5)
3) 3 и 2 (=5)
4) 4 и 1 (=5)
5) 5 и 5 (=10)
Как видим, количество удовлетворяющих нас результатов = 5. Значит, вероятность выпадения числа, кратного 5 = 1 × 5 / 36 = 5/36 ≈ 0.139 = 13.9%
Сумма выпавших очков меньше, чем 8 при следующих результатах:
1) 1 и 1
2) 1 и 2
3) 1 и 3
4) 1 и 4
5) 1 и 5
6) 1 и 6
7) 2 и 1
8) 2 и 2
9) 2 и 3
10) 2 и 4
11) 2 и 5
12) 3 и 1
13) 3 и 2
14) 3 и 3
15) 3 и 4
16) 4 и 1
17) 4 и 2
18) 4 и 3
19) 5 и 1
20) 5 и 2
21) 6 и 1
Как видим, количество удовлетворяющих нас результатов = 21. Значит, вероятность выпадения чисел, сумма которых меньше 8 = 1 × 21 / 36 = 21/36 = 7/12 ≈ 0.583 = 58.3%
Произведение выпавших очков делится на 12 при следующих результатах:
1) 2 и 6
2) 3 и 4
3) 4 и 3
4) 6 и 2
Как видим, количество удовлетворяющих нас значений =4. Значит, вероятность выпадения чисел, произведение которых =12 составляет 1 × 4 / 36 = 4/36 = 1/9 ≈ 0,111 = 11,1%
Количество очков, выпавших в первый раз, и количество очков, выпавших
во второй раз, отличаются на 3 возможно при следующих результатах:
1) 1 и 4
2) 4 и 1
3) 2 и 5
4) 5 и 2
5) 3 и 6
6) 6 и 3
Как видим, количество удовлетворяющих нас результатов =6. Значит, вероятность выпадения чисел, количество очков которых, выпавших в первый раз, и количество очков, выпавших во второй раз, отличаются на 3 составляет 1 × 6 / 36 = 6/36 = 1/6 ≈ 0,166 = 16,6%
ответ: 1) 13.9%; 2) 58.3%; 3) 11,1%; 4) 16,6%.
1. Линейные уравнения с двумя переменными – это уравнение вида ax+by+c=0, где x, y - переменные, a, b,c – некоторые числа.
2. Нет.
3. x - y = 8
x = 8 + y
y = x - 8
4. 2x + y = - 3
x + y/2 = - 1.5
- 2 + 0.5 = -1.5
=> Да, данная пара чисел является решением уравнения.
5. 6x - y = 12
-y = 12 - 6x
y = 6x - 12
6. Решением системы двух линейных уравнений с двумя неизвестными называют пару чисел (x,y) такую, что если подставить эти числа в уравнения системы, то каждое из уравнений системы обращается в верное равенство
7. { 5x + 7 = y - 7
{ -5x - 7 = - y + 7
8. Методом сложения.
Не-не, тут не как сложную ф-цию,а как произведение нужно дифференциировать:
Если так - y=((5x^4)/5+2/x)(2x^4-x), то:
y'=((5x^4)/5+2/x)'(2x^4-x)+(5x^4/5+2/x)(2x^4-x)'= (производная от первой помноженная на вторую + первая на производную второй)
=((20x^3)/5-2/x^2)(2x^4-x)+(5x^4/5+2/x)(8x^3-1)=(4x^3-2/x^2)(2x^4-x)+(8x^3-1)(x^4+2/x)=...=
=x^2(16x^5-5x^2+12)
можно проще - раскрыть скобки и продифференциировать как многочлен:
y=((5x^4)/5+2/x)(2x^4-x)=(2x^3-1)(x^5+2)=2x^8-x^5+4x^3-2
y'=(2x^8-x^5+4x^3-2)'=2*8x^7-5x^4+4*3x^2=16x^7-5x^4+12x^2=x^2(16x^5-5x^2+12)
Если же вот так - y=(5x^(4/5)+2/x)(2x^4-x), то:
y'=(5x^(4/5)+2/x)'(2x^4-x)+(5x^(4/5)+2/x)(2x^4-x)'=
=(5*(4/5)x^(1/5)-2/x^2)(2x^4-x)+(5x^(4/5)+2/x)(8x^3-1)=
=(4/x^(1/5)-2/x^2)(2x^4-x)+(5x^(4/5)+2/x)(8x^3-1)=...=3x^(4/5)(4x^(6/5)+16x^3-3)
или:
y=(5x^(4/5)+2/x)(2x^4-x)=10x^(24/5)-5x^(9/5)+4x^3-2
y'=(10x^(24/5)-5x^(9/5)+4x^3=+48x^(19/5)-9x^(4/5)+12x^2=3x^(4/5)(16x^3-3+4x^(6/5))
Все.
И, если 5x^4/5 - это 5x^(4/5), что мне кажется более вероятным, то пиши внимательней.