Вспомним, что функции вида , где и , где возрастают на всей области определения.
Рассмотрим заданную функцию как сумму двух функций: и . Каждая из них является возрастающей на заданном интервале, тогда и сумма двух возрастающих функций будет функцией возрастающей.
Заданное выражение записываем в виде функции: у = 5х + 1 - ((6х-3)/х) = 5х + 1 - 6 + (3/х) = 5х - 5 + (3/х). Так как переменная есть в знаменателе, то график такой функции - гиперболическая кривая. Найдём производную этой функции. y' = 5 - (3/x²) и приравняем её нулю. 5 - (3/x²) = 0. (5x² - 3)/x² = 0. Достаточно приравнять нулю числитель. 5x² - 3 = 0. x² = 3/5. x = +-√(3/5). Имеем 2 значения точек экстремума. Подставим их в функцию и находим 2 значения: у = -5 + 2√15 ≈ 2,7459667, у = -5 - 2√15 ≈ -12,745967. В этих точках касательная к графику параллельна оси Ох и функция достигает предельных значений. Получаем область допустимых значений функции: x ≤ -12,745967, x ≥ 2,7459667. Эти же значения можно записать так: x ≤ -5 - 2√15, x ≥ -5 + 2√15.
1. у = -2х² + 5х + 3 у=-4 -4=-2x²+5x+3 2x²-5x=7 2x²-5x-7=0 D=(-5)²-4*2*(-7)=81 √81=9 x₁=(5+9)/2*2=14/4=3.5 y=-4 при x₁=3.5; x₂=-1 x₂=(5-9)/2*2=-4/4=-1 2. f(x)= х² – 2х – 8 График во вложении а. y>0 при x∈(-∞;-2)∪(4;+∞) y<0 при x∈(-2;4) б. f возрастает (x₂>x₁ => y₂>y₁) при x∈(1;+∞) f убывает (x₂>x₁ => y₂<y₁) при x∈(-∞;1) в. y(max)=∞ y(min)=-9 3. у = -5х² + 6х Парабола y=ax²+bx, a<0, значит ветви параболы направлены вниз. y(min)=-∞ y(max) принадлежит вершине параболы: х=-b/2a => x=-6/2*-5=0.6 y=-5*0.6²+6*0.6 => y=1.8 Координаты вершины (0.6;1.8) y(max)=1.8 4. Для нахождение точек пересечения 2-х графиков, решаем систему уравнений: {у = х + 2 {у = ( х – 2)² + 2 x²-4x+4+2=x+2 x²-5x+4=0 x₁+x₂=5 x₁*x₂=4 x₁=4 x₂=1 y₁=4+2=6 y₂=1+2=3 Точки пересечения: (4;6) и (1;3) Для графического решения, чертим грапфики обеих функций в одной кооординатной плоскости. График во вложеннии
Вспомним, что функции вида
Рассмотрим заданную функцию как сумму двух функций: