М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
y2334455
y2334455
21.03.2022 18:51 •  Алгебра

График функции y=f(x) - ломаная abcde, где a(-6; -4); b(-2; 4); c(2; 0); d(6; 2); e(8; -2).1) постройте график функции y= f(x).2) найдите с графика y(-5); y(-3); y(4); y(7).3) координаты точек пересечения графика функции y= f(x) с осью ox; oy.​

👇
Ответ:
sveta19772011owor7w
sveta19772011owor7w
21.03.2022

на фото................


График функции y=f(x) - ломаная abcde, где a(-6; -4); b(-2; 4); c(2; 0); d(6; 2); e(8; -2).1) постро
4,4(84 оценок)
Открыть все ответы
Ответ:
срочно118
срочно118
21.03.2022

Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.

Т.к. площадь квадрата находят по формуле  S = а², где а - сторона квадрата,  о площадь данного квадрата равна (х²) см².

А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).

Т.к. площадь квадрата на 50 см² меньше площади прямоугольника,  то составим и решим уравнение:

3x² - 15х = x² + 50,

3x² - x² - 15x - 50 = 0,

2x² - 15x - 50 = 0,

D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,

x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,

x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.

Значит, сторона квадрата равна 10 см.

ответ: 10 см.

4,5(71 оценок)
Ответ:
Catandgog
Catandgog
21.03.2022
Решение:

Данное двойное неравенство равносильно системе двух квадратных неравенств:

\displaystyle \left \{ {{ 6x-9 < x^2} \atop { x^2 \leq 4x-3}} \right. ; \;\;\; \left \{ {{ x^2 - 6x + 9 0} \atop { x^2 - 4x+ 3 \leq 0}} \right.

Первое неравенство x^2 - 6x + 9 0.

Заметим, что в левой части скрывается квадрат разности (формула (a-b)^2 = a^2 - 2ab+b^2): (x-3)^2 = x^2 - 6x + 9.

Неравенство принимает следующий вид: (x-3)^2 0.

Так как квадрат числа всегда неотрицательный, то нам не подходит всего лишь один случай: (x-3)^2 = 0 и x=3.

Значит, первой неравенство эквивалентно тому, что x \ne 3.

Второе неравенство x^2 - 4x + 3 \leq 0.

Вс уравнение x^2-4x+3=0 имеет по теореме Виета (утверждающей, что x_1x_2=3 и x_1+x_2=4) корни x_1=1 и x_2=3.

Из этого следует разложение левой части на множители: (x-1)(x-3) \leq 0.

Метод интервалов подсказывает решение x \in [ 1; 3 ].

     + + +                 - - -                    + + +    

_________[ \; 1 \; ]_________[ \; 3 \; ]_________

                     \\\\\\\\\\\\\\\\\\\\\

Значит, второе неравенство равносильно тому, что 1 \leq x \leq 3.

Имеем значительно более простую систему неравенств:

\displaystyle \left \{ {{ x\neq 3} \atop {1 \leq x \leq 3}} \right.

Вполне понятно, что ее решением является 1 \leq x < 3 (как пересечения двух промежутков).

Или же { x \in [1 ; 3)}.

Задача решена!

ответ:

\Large \boxed { \bf x \in \Big [ \; 1 ; \; 3 \; \Big )}

4,6(83 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ