М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vasviktor
vasviktor
15.06.2020 02:12 •  Алгебра

Доказать, что функция у=f(x) является периодической с периодом , если: 1) 2)

👇
Ответ:
irina956
irina956
15.06.2020
Докажем за определением периодической функции:
f(x) = f(x + T) = f(x − T)

(условие на область определения оно выполняется, так как синус и косинус определены на множестве всех действительных числе)

1) покажем, что выполняется sin(x-\frac{\pi}{4})=sin(x-\frac{\pi}{4}+2\pi)=sin(x-\frac{\pi}{4}-2\pi)
Это и будет означать за определением в случае синуса, что функция 
sin(x-\frac{\pi}{4}) периодична с периодом 2\pi.

sin(x-\frac{\pi}{4}+2\pi)=sin(x-\frac{\pi}{4})cos(2\pi)+cos(x-\frac{\pi}{4})sin(2\pi)=
=sin(x-\frac{\pi}{4})*1+cos(x-\frac{\pi}{4})*0=sin(x-\frac{\pi}{4})

sin(x-\frac{\pi}{4}-2\pi)=sin(x-\frac{\pi}{4})cos(2\pi)-cos(x-\frac{\pi}{4})sin(2\pi)=
=sin(x-\frac{\pi}{4})*1-cos(x-\frac{\pi}{4})*0=sin(x-\frac{\pi}{4})

Доказано

2) cos(x+\frac{2\pi}{3}+2\pi)=cos(x+\frac{2\pi}{3})cos(2\pi)-sin(x+\frac{2\pi}{3})sin(2\pi)=
=cos(x+\frac{2\pi}{3})*1-sin(x+\frac{2\pi}{3})*0=cos(x+\frac{2\pi}{3})

cos(x+\frac{2\pi}{3}-2\pi)=cos(x+\frac{2\pi}{3})cos(2\pi)+sin(x+\frac{2\pi}{3})sin(2\pi)=
=cos(x+\frac{2\pi}{3})*1+sin(x+\frac{2\pi}{3})*0=cos(x+\frac{2\pi}{3})

Доказано
4,4(48 оценок)
Открыть все ответы
Ответ:
kloodinvulf3451
kloodinvulf3451
15.06.2020

Объяснение:

Рассматривая дробное уравнение, мы положим, что 9у4 – 1 <> 0, так как знаменатель не может быть равен нулю. Вычислим при каких У это неравенство выполнимо.

9у4 = 1.

У = √1/3, при данных значениях "У" знаменатель будет равен 0, что недопустимо.

То есть У <> √1/3.

Теперь рассмотрим числитель, который согласно уравнению должен принимать нулевые значения, чтобы выполнялось равенство.

3у3 – 12у2 – у + 4 = 0.

Преобразуем выражение.

3у2 * (у – 4) – (у – 4) = 0.

Вынесем общий множитель (у – 4) за скобку.

(у – 4) * (3у2 - 1) = 0.

Таким образом, получаем 2 уравнения, которые по отдельности должны быть равны 0 для выполнения равенства.

1) У – 4 = 0.

У = 4.

2) (3у2 - 1) = 0.

3у2 = 1.

у2 = 1/3.

У = √1/3, этот корень не подходит по условиям У <> √1/3.

Остается 1 корень у = 4.

ответ: у = 4.

4,6(78 оценок)
Ответ:
almar80
almar80
15.06.2020

Функция f(x) = x^3 - 3x имеет 2 критические точки. х = -1 - точка максимума; х = 1 - точка минимума.

Объяснение:

Решение задачи.

Критическими точками функции называются точки, в которых производная равна нулю, либо производной в этой точке не существует.

Функция f(x) = x^3 - 3x имеет производную на всем числовом интервале. Найдем точки, в которых производная функции f(x) равна нулю.

f'(x) = 3x^2 - 3;

3x^2 - 3 = 0;

3 * (x - 1) * (x + 1) = 0;

Уравнение имеет 2 корня, х = -1 и х = 1.

Функция f(x)=x^3-3x имеет 2 критические точки х = -1 и х = 1.

Определим, являются критические точки точками минимума или максимума.

f''(x) = 6x.

f''(-1) = - 6 < 0, х = -1 - точка максимума.

f''(1) = 6 > 0, x = 1 - точка минимума

4,8(65 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ