Объяснение:
Рассматривая дробное уравнение, мы положим, что 9у4 – 1 <> 0, так как знаменатель не может быть равен нулю. Вычислим при каких У это неравенство выполнимо.
9у4 = 1.
У = √1/3, при данных значениях "У" знаменатель будет равен 0, что недопустимо.
То есть У <> √1/3.
Теперь рассмотрим числитель, который согласно уравнению должен принимать нулевые значения, чтобы выполнялось равенство.
3у3 – 12у2 – у + 4 = 0.
Преобразуем выражение.
3у2 * (у – 4) – (у – 4) = 0.
Вынесем общий множитель (у – 4) за скобку.
(у – 4) * (3у2 - 1) = 0.
Таким образом, получаем 2 уравнения, которые по отдельности должны быть равны 0 для выполнения равенства.
1) У – 4 = 0.
У = 4.
2) (3у2 - 1) = 0.
3у2 = 1.
у2 = 1/3.
У = √1/3, этот корень не подходит по условиям У <> √1/3.
Остается 1 корень у = 4.
ответ: у = 4.
Функция f(x) = x^3 - 3x имеет 2 критические точки. х = -1 - точка максимума; х = 1 - точка минимума.
Объяснение:
Решение задачи.
Критическими точками функции называются точки, в которых производная равна нулю, либо производной в этой точке не существует.
Функция f(x) = x^3 - 3x имеет производную на всем числовом интервале. Найдем точки, в которых производная функции f(x) равна нулю.
f'(x) = 3x^2 - 3;
3x^2 - 3 = 0;
3 * (x - 1) * (x + 1) = 0;
Уравнение имеет 2 корня, х = -1 и х = 1.
Функция f(x)=x^3-3x имеет 2 критические точки х = -1 и х = 1.
Определим, являются критические точки точками минимума или максимума.
f''(x) = 6x.
f''(-1) = - 6 < 0, х = -1 - точка максимума.
f''(1) = 6 > 0, x = 1 - точка минимума
f(x) = f(x + T) = f(x − T)
(условие на область определения оно выполняется, так как синус и косинус определены на множестве всех действительных числе)
1) покажем, что выполняется
Это и будет означать за определением в случае синуса, что функция
Доказано
2)
Доказано