1) Если 2b-5=0, то есть b=2.5, уравнение становится линейным и имеет 1 корень. -2(2.5-1)x+3=0 -3x+3=0 x=1 2) Если 2b-5≠0, то уравнение квадратное и имеет два различных корня в том случае, когда D>0. D=(2(b-1))²-4(2b-5)*3=4(b²-2b+1)-12(2b-5)= 4b²-8b+4-24b+60=4b²-32b+64=4(b²-8b+16)=4(b-4)²>0 Отсюда b≠4. Таким образом, уравнение имеет 2 действительных различных корня при всех b, кроме 2.5 и 4. b∈(-∞;2.5)∪(2.5;4)∪(4;+∞).
Чертим отрезок равный длине одной из сторон. в начало или конец отрезка устанавливаем циркуль и чертим окружность радиусом равным второй стороне. берём транспортир и устанавливаем его в центр окружности и отмеряем угол между исходным отрезком и второй стороной, ставим точку на окружности. соединяем отрезком центр окружности и точку на окружности. далее соединяем второй конец отрезка и точку на окружности. чертим отрезок равный одной из сторон, лучше выбрать большую сторону. в начало отрезка устанавливаем циркуль и радиусом, равным длине второй стороны, чертим окружность. на другом конце отрезка также устанавливаем циркуль и чертим окружность, но радиусом равным длине третьей стороны. получим точку пересечения окружностей. соединяем её с вершинами исходного отрезка и получаем заданный треугольник.
Пусть его скорость была -хкм/ч. первый за 2 часа проехал 16*2=32 км, что бы его догнать нужно 32/(х-16) часов. второй за 1 час проехал 10 км, что бы догнать второго нужно 10/(х-10) часов. разница в гонке между ними известно по условию. состовляем уравнение 32/(х-16)-10/(х-10)=4,5 32х-320-10х+160=4,5(х-10)(х-16) при х≠10 и х≠16 22х-160=4,5(х²-26х+160) 4,5х²-139х+880=0 д=59² х1=(139+59)/9=22 х2=(139-59)/9=8.(8) так как х2< 10 то это не может быть решением, так как он никогда не догнал бы даже второго велосипедиста. получаем ответ при х=22км/ч ответ: 22 км/ч
-2(2.5-1)x+3=0
-3x+3=0
x=1
2) Если 2b-5≠0, то уравнение квадратное и имеет два различных корня в том случае, когда D>0.
D=(2(b-1))²-4(2b-5)*3=4(b²-2b+1)-12(2b-5)=
4b²-8b+4-24b+60=4b²-32b+64=4(b²-8b+16)=4(b-4)²>0
Отсюда b≠4.
Таким образом, уравнение имеет 2 действительных различных корня при всех b, кроме 2.5 и 4.
b∈(-∞;2.5)∪(2.5;4)∪(4;+∞).