М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Аминишка
Аминишка
10.09.2021 10:51 •  Алгебра

1) х^2-x+2(x-1)^2=3x-2 2) (5-y)^2+17=(y-3)^2 3) 7x+x(x-7)=(2x+5)(5-2x) 4) 2y(3y-4)+24y=(7y-3)(2+y) 5) 31-3x-x^2-20x+7(x-2)^2

👇
Ответ:
nikakoy43
nikakoy43
10.09.2021
Надеюсь, что не очень темно
1) х^2-x+2(x-1)^2=3x-2 2) (5-y)^2+17=(y-3)^2 3) 7x+x(x-7)=(2x+5)(5-2x) 4) 2y(3y-4)+24y=(7y-3)(2+y) 5
1) х^2-x+2(x-1)^2=3x-2 2) (5-y)^2+17=(y-3)^2 3) 7x+x(x-7)=(2x+5)(5-2x) 4) 2y(3y-4)+24y=(7y-3)(2+y) 5
4,5(29 оценок)
Открыть все ответы
Ответ:
Umarinavitalevna
Umarinavitalevna
10.09.2021
1)2sin^2x-sin2x=cos2x,
2sin^2x-2sinxcosx=cos^2-sin^2x,
2sinx*(sinx-cosx)+sin^2x-cos^2x=0,
2sinx(sinx-cosx)+(sinx-cosx)*(sinx+cosx)=0,
(sinx-cosx)(2sinx+sinx+cosx)=0,
(sinx-cosx)(3sinx+cosx)=0
1. sinx-cosx=0, sinx=cosx, tgx=1
x=pi/4+pi*k, k-целые
2. 3sinx+cosx=0, 3sinx=-cosx, tgx=-1/3
x=arctg(-1/3)+pi*k, k-целые
2)cos3x+cosx=0,
4cos^3x-3cosx+cosx=0,
4cos^3x-2cosx=0,
4cosx(cosx-√2/2)(cosx+√2/2)=0
1. cosx=0, x=pi/2+pi*k, k-целые
2. cosx=√2/2, x=+-pi/4+2pi*k
3. cosx=-√2/2, x=+-3pi/4+2pi*k
Корни из промежутка [-pi/2;pi/2]:
x=-pi/2, x=pi/2, x=-pi/4, x=pi/4
4,6(46 оценок)
Ответ:
Yugeom
Yugeom
10.09.2021
1 Данная задача решается аналитически, поэтому можно вовсе не рисовать графики прямой и параболы. Часто это дает большой плюс в решении примера, так как в задаче могут быть даны такие функции, что их проще и быстрее не нарисовать. 2 Согласно учебникам по алгебре парабола задается функцией вида f(x)=ax^2+bx+c, где a,b,c – это вещественные числа, притом коэффициент a отличен он нуля. Функция g(x)=kx+h, где k,h – это вещественные числа, определяет прямую на плоскости. 3 Точка пересечения прямой и параболы – это общая точка обеих кривых, поэтому в ней функции примут одинаковые значение, то есть f(x)=g(x). Данное утверждение позволяет записать уравнение: ax^2+bx+c=kx+h, которое даст возможность найти множество точек пересечения. 4 В уравнении ax^2+bx+c=kx+h необходимо перенести все слагаемые в левую часть и привести подобные: ax^2+(b-k)x+c-h=0. Теперь остается решить полученное квадратноеуравнение. 5 Все найденные "иксы" – это еще не ответ на задачу, так как точку на плоскости характеризуют два вещественных числа (x,y). Для полного завершения решения необходимо вычислить соответствующие "игрики". Для этого нужно подставить "иксы" либо в функцию f(x), либо в функцию g(x), ведь для точки пересечения верно: y=f(x)=g(x). После этого вы найдете все общие точки параболы и прямой. 6 Для закрепления материала очень важно рассмотреть решение на примере. Пусть парабола задается функцией f(x)=x^2-3x+3, а прямая – g(x)=2x-3. Составьте уравнение f(x)=g(x), то есть x^2-3x+3=2x-3. Перенося все слагаемые в левую часть, и приводя подобные, получите: x^2-5x+6=0. Корни данного квадратного уравнения: x1=2, x2=3. Теперь найдите соответствующие "игрики": y1=g(x1)=1, y2=g(x2)=3. Таким образом, найдены все точки пересечения: (2,1) и (3,3).
4,5(44 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ