Сравните числа:
а) –2 < 5;
б) –6 > –7;
д) 36,5 > 0;
е) –8,2 < 0
Выполните сложение:
а) 1,4 + 4,12=5,52;
б) (–7) + 3,6=3,4;
в) –7 + 2=-5;
г) 2,6 + (–1,1)=1,5;
д) (–4,9) + (–1,1)=-6;
Выполните вычитание:
а) 6,37–(–14,1)=20,47;
б) 2,66–1,14=1,52;
в) –7,44–(–43,6)=36,16;
г) –4,09–1,71=-5,8
д) –7– 2=-9
Выполните умножение и деление:
2) -6:1=-6;
3) -0,5∙(-0,9)=0,45;
5) -5∙2∙(-3)=30
6) -0,96:0,016: (-1).=60
Решите уравнение:
1)(0,5+7х):5=8,5
1+14х=85
14х=84
х=6
2) х -5∙(4-х)=11
6х-20=11
6х=31
х=5,16
6. Напишите все целые решения у, если 8< │у│<12
+-11; +-10; +-9
Рассмотрим обжору (пусть это обжора А), который съел наибольшее количество пирожков. Тогда справа от него сидит обжора, съевший в два раза меньше, т.е. А съел четное количество пирожков. Пусть есть обжора, который съел нечетное количество пирожков. Тогда справа от него сидит обжора, съевший на 6 больше, то есть он тоже съел нечетное количество пирожков. Продолжая подобные рассуждения получим, что все съели нечетное количество пирожков, однако А съел четное. Противоречие. Итак, все съели четное количество пирожков. Значит, общее количество съеденных пирожков тоже четное. Поэтому все пирожки не могли быть съедены. Покажем, что 1 пирожок мог остаться:
Рассмотрим обжору Б. Пусть он съел 2 пирожка. Следующий справа съел 8, следующий съел 4. Тогда в этой тройке всего съедено 14 пирожков. Поставим 7 таких троек друг за другом: (2, 8, 4), (2, 8, 4),...,(2, 8, 4). Всего съедено 14*7=98 пирожков, то есть один остался. Легко видеть, что предъявленная расстановка отвечает требованиям условия.
Итак, наименьшее количество оставшихся пирожков равно 1.
ответ: один-единственный