Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ни четные ,ни нечетные
Объяснение:
1)
f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2)
y = f(x) = √(x³ + x²) - 31*| x³ | ,
D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0 ⇒ x ≥ -1 * * * x ∈ [ -1 ; ∞) * * *
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( -∞ ; - 1) * * *
функция ни чётная ,ни нечётная
Правильное условие смотри в приложении.
2)
Площадь такой клумбы будет равна квадрату её стороны.
S = (a м)² = a² м²
3)
4(2-1,5x)-3(x-2) = 4·2-4·1,5x-3x-3·(-2) = 14-9x
При x = -0,7:
14-9x = 14-9·(-0,7) = 14+6,3 = 20,3
4)
5a-(7-2(3-a)-3) = 5a-(7-2·3-2·(-a)-3) = 5a-(2a-2) = 5a-2a+2 = 3a+2
5)
За 8 билетов по а руб. каждый, нужно заплатить a·8 руб. Остальные 15-8=7 билетов стоят по a+100 руб. Значит, за них нужно заплатить (a+100)·7 руб.
Тогда P = 8a + 7(a+100) = 8a+7a+700 = 15a+700 руб.
ответы:
2) S = a² м²
3) 20,3
4) 3a+2
5) P = 15a+700 руб.
Есть формула: S = b₁(q^n -1)/(q -1)
Подставим в неё известные величины. получим:
4 = 0,1*(3^n-1)/(3 -1)
4 =0,1*(3^n-1)/2
8 = 0,1*(3^n -1)
80 = 3^n-1
81 = 3^n
n =4