Если ещё не изучено понятие производной, то решение может быть таким:
1. -2;
2. 3.
Объяснение:
1.Sn=6n-n^2
a1 = S1 = 6•1 - 1^2 = 5;
a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;
a2 = S2 - S1 = 8 - 5 = 3.
Найдём d:
d = a2 - a3 = 3 - 5 = -2.
2. Sn=6n-n^2
Рассмотрим квадратичную функцию
у = 6х - х^2.
Графиком функции является парабола
у = - х^2 + 6х
Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:
х вершины = -b/(2a) = -6/(-2) = 3.
y вершины = - 3^2 +6•3 = -9+18 = 9.
Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.
Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.
Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.
ответить на второй вопрос можно и по-прежнему другому:
Sn=6n-n^2
- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.
Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.
Средняя скорость — это отношение пройденного пути к времени движения. Пусть весь путь составляет S км, тогда первую половину пути автомобиль проехал за дробь, числитель — S, знаменатель — 2 умножить на 55 часов, а вторую — за дробь, числитель — S, знаменатель — 2 умножить на 70 часов. Средняя скорость автомобиля равна:
дробь, числитель — S, знаменатель — дробь, числитель — S {2 умножить на 55, знаменатель — плюс дробь, числитель — S, знаменатель — 2 умножить на 70 }= дробь, числитель — 2 умножить на 70 умножить на 55, знаменатель — 70 плюс 55 = дробь, числитель — 2 умножить на 70 умножить на 55, знаменатель — 125 = дробь, числитель — 2 умножить на 11 умножить на 14, знаменатель — 5 =61,6км/ч.
ответ: 61,6.
Так как сумма денег Флоры не менялась, примем ее за Х евро, тогда:
5Х/3 евро сумма денег Риа до покупки,
3Х/5 евро сумма денег Риа после покупки
5Х/3 - 3Х/5 = 160 по условию (разность до и после равна стоимости планшета)
25Х/15 - 9Х/15 = 160
16Х/15 = 160
Х = 160*15/16 = 150 (евро) деньги Флоры
5Х/3 = 5*150/3 = 250 (евро) было у Риа до покупки
ответ: (В) 250 евро.
Проверка: (250-160) : 150 = 3 : 5