Преобразуем по формуле суммы кубов: (x+y)(x²-xy+y²) = x³+y³
(x₁+x₂)(x₁²-x₁x₂+x₂²) = 32
Из теоремы Виета получаем, что
x₁+x₂ = 2x₁x₂ = qПреобразуем нашу формулу суммы кубов, подставив вместо x₁+x₂ и вместо x₁x₂ соответствующие значения (2 и q):
(x₁+x₂)(x₁²-x₁x₂+x₂²) = 32
2 * (x₁²- q + x₂²) = 32
Чтобы найти значение x₁²+x₂², возведём в квадрат следующее равенство:
(x₁+x₂)² = 2²
x₁²+2x₁x₂+x₂²=4
x₁²+x₂²=4-2x₁x₂
Воспользуемся следующим равенством x₁x₂ = q
x₁²+x₂²=4-2q
Ещё раз преобразуем нашу формулу:
x₁²+ x₂² - q= 16
4 - 2q - q = 16;
-3q =12
q = -4
Умножим на -4/5 и получаем ответ: -4/5q = -16/5
1)
y=x+2 домножим на 4
4y+x^2=8 сделаем перенос
4y=4x+8
4y=8 -x^2 вычтем второе из первого
4y-4y =4x+8 -(8 -x^2)
0=x^2+4x
x(x+4)=0 один из множителей равен =0
x1=0 ; y1=x1+2=0+2=2
x2=-4; y2=x2+2=-4+2=-2
отве+т (-4; -2) ; (0; 2)
2)
y^2+2x-4y=8
2y-x=2 домножим на 2
y^2+2x-4y=8
4y-2x=4 ; сложим уравнения
y^2+2x-4y + 4y-2x = 12
y^2=12
y1= -√12 = - 2√3
y1= √12 = 2√3
2y-x=2 ; x=2y-2
x1=2*(- 2√3) -2 = -2 - 4√3
x2=2* 2√3 -2 = -2 +4√3
ответ (-2 - 4√3 ; - 2√3) ; (-2 + 4√3 ; 2√3)
3)
x\2-y\3=x-y домножим на -4
2(x+y)-2(x-y)-3=2x+y упростим
-2x+4y/3=-4x+4y
-8y/3+2x=0 (1)
2x+2y-2x+2y-3=2x+y
4y -3 = 2x+y
3y -2x = 3 (2)
сложим (1) и (2)
-8y/3+2x +3y -2x =0 +3
-8y/3+3y =3
y (3-8/3)=3
y (9-8) / 3=3
y= 9
из уравнения (2)
3y -2x = 3 ; 2x =3y-3 ; x=3/2 *(y-1)
x= 3/2 *(9-1) =12
ответ (12; 9)
4)
3(x-y)-2(x+y)=2x-2y упростим
x-y/3-x+y/2=x/6+1 домножим на 6 и упростим
3x-3y-2x-2y=2x-2y
- 3y = x (1)
6x-2y-6x+3y=x+6
y=x+6 (2)
вычтем из (1) (2)
- 3y - y = x -(x+6)
-4y = -6
y= 3/2
тогда из (1)
- 3y = x ; x= -3 * 3/2 = -9/2