Ядро в алгебре — характеристика отображения f:A– B ,обозначаемая ker f отражающая отличие f от инъективного отображения, обычно — множество прообразов некоторого фиксированного (нулевого, единичного, нейтрального) элемента e. Конкретное определение может различаться, однако для инъективного отображения f множество ker f всегда должно быть тривиально, то есть состоять из одного элемента (как правило, нейтрального элемента из A.
Если множества A и B обладают некоторой структурой (например, являются группами или векторными пространствами), то ker f также должно обладать этой структурой, при этом различные формулировки основной теоремы о гомоморфизме связывают образ Im f и фактормножество A/ker f
Найдем сначала уравнение секущей:
Она проходит через две точки:х1=-1, у1 = 2*(-1)^2 = 2
и х2 = 2, у2 = 2*2^2 = 8
Ищем уравнение секущей в виде: y=kx+b
Подставим сюда две наши точки и решим систему, найдем k:
-k+b=2
2k+b=8 Вычтем из второго первое: 3k = 6, k= 2.
Наша искомая касательная должна быть параллельна секущей, значит имее такой же угловой коэффициент. k=2
Найдем точку касания, приравняв производную нашей ф-ии двум:
Y' = 4x = 2
x = 1/2
Уравнение касательной к ф-ии в т.х0:
у = у(х0) + y'(x0)(x-x0)
Унас х0 = 1/2, у(1/2) = 2*(1/4) = 1/2, y'(1/2)= 2.
Тогда получим:
у = 1/2 + 2(х - 1/2)
у = 2х -0,5 - искомое уравнение касательной.