Пусть второй рабочий изготовил х деталей. Первый рабочий изготовил на 16% больше. Чтобы найти 16% от числа х, надо 16% перевести в десятичную дробь 0,16, а чтобы найти дробь от числах, надо это число х умножить на дробь 0,16. Значит, первый рабочий изготовил (х + 0,16х) деталей. Вместе оба рабочих изготовили (х + (х + 0,16х)) деталей или 86 деталей. Составим уравнение и решим его.
x + (x + 0,16x) = 86;
x + x + 0,16x = 86;
2,16x = 86;
x = 86 : 2,16;
x = 39,8=40 (деталей) – второй рабочий;
x + 0,16x = 1,16x = 40 * 1,16 = 46 (деталей) – первый рабочий.
ответ. 40 деталей; 46 деталей.
ответ:ешим уравнение и найдем корень уравнения:
sin^2 x + 2 * sin x * cos x - 3 * cos^2 x = 0;
Делим уравнение на cos^2 x.
sin^2 x/cos^2 x + 2 * sin x * cos x/cos^2 x - 3 * cos^2 x/cos^2 x = 0;
(sin x/cos x)^2 + 2 * (sin x/cos x) - 3 * 1 = 0;
tg^2 x + 2 * tg x - 3 = ;
Найдем дискриминант квадратного уравнения:
D = 4 - 4 * 1 * (-3) = 16;
tg x1 = (-2 + 4)/2 = 2/2 = 1;
tg x2 = (-2 - 4)/2 = -6/2 = -3;
1) tg x = 1;
x = arctg (1) + pi * n, где n принадлежит Z;
x = pi/4 + pi * n, где n принадлежит Z;
2) tg x= -3;
x = arctg (-3) + pi * n, где n принадлежит Z;
x = -arctg (3) + pi * n, где n принадлежит Z.
Объяснение:
1!·2!·3!·4!·5!·6!·... ·97!·98!·99!·100!=
=1·2·(3!)²·4·(5!)²·6·... ·(97!)²·98·(99!)²·100=(3!·5!·...97!·99!)²·2·4·6·...98·100=
=(3!·5!·...97!·99!)²·2⁵⁰·(1·2·3·...49·50)=
=(2²⁵·3!·5!·...97!·99!)²·(50!)