Преобразуем выражения, воспользовавшись следующими свойствами степеней:
а^c * b^c = (ab)^c,
(a^b)^c = a^(bc),
a^b * a^c = a^(b + c).
x * x^3 * x * x^7 = x^(1 + 3 + 1 + 7) = x^12.
(-2a)^2 * (-2a) * (-2a)^5 = (-2a)^(2 + 1 + 5) = (-2a)^8 = (-1)^8 * 2^8 = 1 * 2^8 = 2^8.
c^m * c * c^2 * c^(m+1) * c = c^(m + 1 + 2 + m + 1 + 1) = c^(2m + 5).
5 * 125 * 25 = 5 * 5^3 * 5^2 = 5^(1 + 3 + 2) = 5^6.
8 * 32 * 16 = 2^3 * 2^5 * 2^4 = 2^(3 + 5 + 4) = 2^12.
3^n * 27 * 3^(n – 4) * 9 = 3^n * 3^3 * 3^(n – 4) * 3^2 = 3^(n + 3 + n – 4 + 2) = 3^(2n + 1).
Имеем бесконечно убывающую геометрическую прогрессию, |q| < 1
b2 = b1*q
b1 = b2/q
Нам нужно найти знаменатель бесконечно убывающей прогрессии, у которой второй член в 8 раз больше сумма всех ее последующих членов. То есть нам нужно знать две суммы: всей геометрической прогрессии и её части - от третьего члена до бесконечности.
S1 = b1/1-q - сумма всей геометрической прогрессии
S2 = b3/1-q - сумма членов геометрической прогрессии, начиная с третьего.
b2 = 8*S2 - второй член в 8 раз больше суммы всех членов, начиная с третьего.
Немного поработаем с формулами:
b2 = 8*S2
b1*q = 8 * b1*q^2/1-q
b1*q(1-q) = 8*b1*q^2
q - q^2 = 8*q^2
q - 9q^2 = 0
q(1-9q) = 0
q = 0 и 1-9q = 0
q = 1/9
q не может быть равно нулю(это одно из условий в геометрической прогрессии). Поэтому ответ один - 1/9.
=)