(-3;-17) - точка экстремума функции (минимум)
Объяснение:
Точки экстремума - это такие точки, в которых значение функция, скажем так, меняет свою скорость роста. То есть до неё функция либо возрастала, либо убывала, а после неё наоборот - начинает либо убывать, либо возрастать.
Для нахождения точки экстремума потребуется найти производную 1 порядка:
После этого мы приравниваем получившуюся функцию к нулю и решаем получившееся уравнение:
2x+6=0 => 2x=-6 => x=-3
но необходимо убедиться, что данная точка действительно является экстремумом, для этого мы смотрим как ведёт себя функция y' до и после точки x0=-3 (можно подставить любые значения <-3 а потом значение >-3, если получаются разные по знаку числа, к примеру отрицательное-положительное или положительное-отрицательное, то данная точка действительно является экстремумом функции y, а точнее в данном случае она является минимумом).
Ну а теперь осталось подставить значение x0=-3 в изначальную функцию y и найти y0
Ну и запишем ответ:
(-3;-17) - точка экстремума функции (а точнее - минимум)
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
А вот доказательство
Так как ∠A=∠A1, то можно треугольник A1B1C1 наложить на треугольник ABC так, чтобы
точка A1 совместилась с точкой A,
луч A1C1 наложился на луч AC,
луч A1B1 — на луч AB.
Так как AB=A1B1, то при таком наложении сторона A1B1 совместится со стороной AB, а значит, точка B1 совместится с точкой B.
Аналогично, сторона A1C1 совместится со стороной AC, а точка C1 — с точкой C.
Следовательно, сторона B1C1 совместится со стороной BC.
Значит, при наложении треугольники полностью совместятся, поэтому ΔABC= ΔA1B1C1
Что и требовалось доказать.
Ну как-то так
получай ответ