а)Координаты пересечения параболой оси Ох (-2; 0); (2; 0)
б)Координаты пересечения параболой оси Оу (0; 12)
Объяснение:
Найти координаты точек пересечения параболы
y=-3x²+12 с осями координат.
а)Чтобы найти точки пересечения параболы с осью Ох, нужно решить квадратное уравнение:
-3x²+12=0
3x²-12=0
х₁,₂=±√144/6
х₁,₂=±12/6
х₁= -2
х₂=2
Координаты пересечения параболой оси Ох (-2; 0); (2; 0)
б)Любой график пересекает ось Оу при х=0.
х=0
y= -3x²+12
у=0+12
у=12
Координаты пересечения параболой оси Оу (0; 12)
Объяснение:
Для того, чтобы найти координаты точки пересечения графиков функций y = 1.5x и 2y + 2x = 27, необходимо решить систему уравнений:
y = 1.5x;
2y + 2x = 27.
Решения данной системы уравнений и будет координатами точки пересечения графиков данных функций.
Решаем данную систему уравнений.
Подставляя во второе уравнение значение y = 1.5x из первого уравнения, получаем:
2 * 1.5x + 2x = 27;
3х + 2х = 27;
5х = 27;
х = 27 / 5;
х = 5.4.
Зная х, находим у:
y = 1.5x = 1.5 * 5.4 = 8.1.
ответ: координаты точки пересечения графиков данных функций (5.4; 8.1)
1,5n (м) - ткань на блузку
а) 1,5n метров ткани Ира купила на блузку;
б) 1,5n - n = 0,5n (м) - на столько больше метров ткани она купила на блузку;
в) n + 1,5n = 2,5n (м) - столько всего метров ткани купила Ира;
г) 2,5n * х (руб.) - столько денег истратила Ира на всю ткань.