М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
muratov20011
muratov20011
28.11.2021 15:23 •  Алгебра

Докажите, что функция, заданная формулой у=(х-2)(х^3+2x^2+4x+8)-x(x-3)(x^2+3x+9), является линейной

👇
Ответ:
yadilightoy1140
yadilightoy1140
28.11.2021
(x-2)(x²(x+2)+4(x+2))-x(x³-27)=(x-2)(x+2)(x²+4)-x^4+27x=
=(x²-4)(x²+4)-x^4+27x=x^4-16-x^4+27x=27x-16
4,6(72 оценок)
Открыть все ответы
Ответ:
dimonm079
dimonm079
28.11.2021
Поскольку переменная х входит в чётной степени, то график заданной функции симметричен относительно оси у.
Производная этой функции равна нулю пр х = 0.
Подставив это значение в уравнение функции, получаем у = 1.
Исследуем поведение производной вблизи точки х = 0.
х           0.5              0           -0.5
у'      -0.6875          0          0.6875.
Производная переходит с + на -, значит, при х = 0 имеем максимум функции, равный у = 1.
Минимальное значение на заданном отрезке найдём, подставив значение х = +-3 в уравнение (достаточно х = 3, так как функция чётная) ymin = 1-3⁴-3⁶ = 1-3⁴*(1+3²) = 1-81*(1+9) = 1-810 = -809.
ответ при (х=+-3) :   умакс = 1,
                                   умин = -809.
4,8(2 оценок)
Ответ:
Если прямая перпендикулярно плоскости, то ее направляющий вектор является нормальным вектором плоскости.

1)Уравнение плоскости через нормальный вектор: Ax+By+Cz+D=0, где A, B, C - координаты нормального вектора плоскости N(A,B,C).
Уравнение данной плоскости 2x-3y+4z-3=0 ⇒ N(2,-3,4).

2)Уравнение прямой через точку направляющий вектор: \frac{x-x_{0}}{l}=\frac{y-y_{0}}{m}=\frac{z-z_{0}}{n}, где x_{0},y_{0},z_0} - координаты точки M(x_{0},y_{0},z_0}), через которую проходит прямая, l,m,n - координаты направляющего вектора S(l,m,n).
По условию S(l,m,n) = N(A,B,C) ⇒ N(2,-3,4) = S(2,-3,4); M(1,-2,3).

3)Готовое уравнение прямой: \frac{x-1}{2}=-\frac{y+2}{3}=\frac{z-3}{4}
4,4(75 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ