Вот если с много членом я разобрался ну типа много членов, то дву член в кубе это я не знаю. Я конешно играл в минесрафт и строил там квадратные члены но не двучлены так что я не знаю как можно построить квадратный дву член . Попробуй у мамы с она всегда знаеть! Я вот недавно с как умножить 8 x 6 так она как профессор за секунду сказала что будет 22. Ну я щяс в 12 класе типа хз как умножать и ваще у меня 2 по алгебрам и геометриям и математикам. А за 2 мама больно ремнём даёт попу щиплет ай ай
Объяснение:
![\left(\dfrac{1}{4};\;\dfrac{1}{3}\right]](/tpl/images/1360/4170/bfd50.png)
Объяснение:
Рассмотрим сначала первое неравенство системы.
Начнем с ОДЗ:

Продолжим решение:

1)

Замена:
.

Обратная замена:

С учетом ОДЗ оба корня подходят.
2)

С учетом ОДЗ получим, что решение неравенства:
![x\in\left(\dfrac{1}{27};\;\dfrac{1}{3}\right]\cup[9;\;+\infty)](/tpl/images/1360/4170/0c6fd.png)
Теперь перейдем ко второму неравенству системы:
Понятно, что сначала нужно написать ОДЗ.

Продолжим решение:
![36^x+36\sqrt[4]{6}-6^{x+\frac{1}{4}}](/tpl/images/1360/4170/40301.png)
Заметим, что данное неравенство хорошо раскладывается на множители:
![36^x+36\sqrt[4]{6}-6^{x+\frac{1}{4}}](/tpl/images/1360/4170/de2d2.png)
Решим неравенство по методу интервалов.
1)
![\sqrt[4]{6}-6^x=0\\6^x=6^{\frac{1}{4}}\\x=\dfrac{1}{4}](/tpl/images/1360/4170/8f389.png)
2)

Введем функции
и
. Заметим, что первая функция возрастает, а вторая убывает. Поэтому, если уравнение имеет корень, он единственный. Теперь заметим, что x=2 - корень уравнения. Действительно,
, верно. Так, мы решили это уравнение, получив, что его корень x=2.
Тогда решение неравенства с учетом ОДЗ:

Итого имеем:
![x\in\left(\dfrac{1}{27};\;\dfrac{1}{3}\right]\cup[9;\;+\infty)\\x\in\left(\dfrac{1}{4};\;2\right)](/tpl/images/1360/4170/0ebfe.png)
Найдем пересечение:
![x\in\left(\dfrac{1}{4};\;\dfrac{1}{3}\right]](/tpl/images/1360/4170/792e3.png)
Задание выполнено!
8/(x-2)+(x²+2x+4)=(8+(x-2)(x²+2x+4))/(x-2)=(8+x³-8)/(x-2)=x³/(x-2)
в
(x-4y)/6x(x-y)-(x+4y)/6x(x+y)=[(x-4y)(x+y)-(x+4y)(x-y)]/[6x(x²-y²)]=
=(x²+xy-4xy-4y²-x²+xy-4xy+4y²)/[6x(x²-y²)]=-6xy/[6x(x²-y²)=y/(y²-x²)
г
(b+3)/9(b-3)-(b-1)/(b-3)(b+3)=[(b+3)²-9(b-1)]/[9(b²-9)]=
=(b²+6b+9-9b+9)/[9(b²-9)]=(b²-3b+18)/[9(b²-9)]