Пусть g(x)=x/(x+1) Функция f определена на интервале [0;1). Найдем, при каких х дробь x/(x+1) принадлежит указанному интервалу. Решаем неравенство: 0≤х/(х+1) < 1, которое равносильно системе неравенств: {x/(x+1) >0; {x/(x+1)-1<0.
или {x/(x+1) >0; {-1/(x+1)<0.
{x+1>0 {x≥0
Решением данного неравенства является х≥0 или х∈[0;+∞)
Построим график функции g(x)=x/(x+1). Выделим целую часть g(x)=(x+1-1)/(x+1); g(x)=1-(1/(x+1))- гипербола Cм. рисунок в приложении Найдем при каких х g(x)∈[0;1) 0≤g(x)<1 ⇒ 0≤x< + ∞ или х∈[0;+∞) О т в е т. D(f(x/(x+1))=[0;∞)
Допустим, мы вынимаем по одной перчатке из левого и правого ящика, пока не получим две белых или две черных. Две красных мы не можем получить, потому что красные только правые. В самом плохом случае мы вынем из левого ящика 2 белых, а из правого 2 красных. Потом из левого 4 черных, а из правого 4 белых. Остались в левом белые, а в правом белые и черные. Достаточно вынуть 1 из правого ящика, левые у нас уже есть и белые, и черные. Всего нужно 2 + 2 + 4 + 4 + 1 = 13 перчаток.
Допустим, мы действуем по-другому. Вынимаем сначала перчатки только из левого ящика. Нам нужно обязательно хотя бы по 1 черную и белую. В самом плохом случае мы вынем все 8 белых и только 9-ую черную. Теперь вынимаем из правого ящика. В самом плохом случае 2 красных и третью белую или черную. Всего понадобилось 9 + 3 + 1 = 13.
Допустим, мы начали с правого ящика. Тогда мы вытащим 2 красных, 9 белых и 1 черную. Из левого достаточно вынуть 1 перчатку. Всего 2 + 9 + 1 + 1 = 13 перчаток.
В общем, при любом мы все равно получаем 13 перчаток.
6х^2-3x =0 вынесем общий множитель за скобки: 1) 3x(2x-1)=0 произведение двух множителей равно 0, если один из них или оба равны 0: 3х=0 или 2х-1=0 первый корень х=0 2х-1=0 2х=1 х=1/2 - второй корень. 2)25х^2=1 x^2=1/25 x=+- 5 3)4x^2+7x-2=0 вычислим дискриминант D=b^2-4ac D=49+32=81 x=(-7+-9)/8 x первое =-2, х второе х=2/8=1/4 4)4x^2+20x+1=0 D=400-16=384 x=(-20+-VD):8 V - обозначение квадратного корня 5) 3x^2 + 2x + 1 =0 D=4-12=-8<0 уравнение решений не имеет, т.к дискриминант отрицательный 6) х^2 + 2,5x -3=0 D= 2,5^2-4*1*(-3)=18,25 x=( -2,5+- VD):2 7) x^4 -13x^2 +36=0 введем обозначение x^2= t, получим новое уравнение t^2 -13t +36=0 D= 169+144=313 К сожалению, корень квадратный из дискриминанта не извлекается. Надо проверить правильность условия, потому что нам нужно решит уравнение х^2=t и найти х.
Функция f определена на интервале [0;1).
Найдем, при каких х дробь x/(x+1) принадлежит указанному интервалу.
Решаем неравенство:
0≤х/(х+1) < 1,
которое равносильно системе неравенств:
{x/(x+1) >0;
{x/(x+1)-1<0.
или
{x/(x+1) >0;
{-1/(x+1)<0.
{x+1>0
{x≥0
Решением данного неравенства является х≥0 или х∈[0;+∞)
Построим график функции g(x)=x/(x+1).
Выделим целую часть
g(x)=(x+1-1)/(x+1);
g(x)=1-(1/(x+1))- гипербола
Cм. рисунок в приложении
Найдем при каких х
g(x)∈[0;1)
0≤g(x)<1 ⇒ 0≤x< + ∞
или
х∈[0;+∞)
О т в е т. D(f(x/(x+1))=[0;∞)