a=4
(2;1)
Объяснение:
Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Объяснение:
НЕТ НЕ ВЕРНО
|a + b| ≤ |a| + |b| это ВЕРНО
Существует 4 варианта знаков + и - для чисел a и b
1 вариант
Если a > 0 и b > 0
их модули совпадают с их значениями: |a| = a, |b| = b
Из этого следует, что |a + b| = |a| + |b|
2 вариант
Если a < 0 и b > 0
выражение |a + b| можно записать как |b – a|
А выражение |a| + |b| равно сумме абсолютных значений a и b, что больше, чем |b – a|
3 вариант (похож на 2 вариант)
Если a > 0 и b < 0 |a + b|
выражение |a + b| принимает вид |a – b|
А выражение |a| + |b| равно сумме абсолютных значений a и b что также больше чем |a - b|
Поэтому |a + b| < |a| + |b|
4 вариант
Если a < 0 и b < 0
тогда |a + b| = |–a – b| = |-(a + b)|
Но в варианте 1 доказано, что |a + b| = |a| + |b|, следовательно и |–a – b| = |a| + |b|
значит |a + b| ≤ |a| + |b| в зависимости от знаков a и b
а вот |ab| = |a|*|b|