ответ:Объяснение:
Исходная дробь равносильна следующей системе (числитель равен нулю, знаменатель не равен нулю + ОДЗ):
В первом уравнении произведение равно нулю, когда хотя бы один из множителей равен нулю. Второе неравенство равносильно тому, что подкоренное выражение не равно нулю. Значит, вместе второе и третье образуют неравенство 2x + y - 1 > 0 ⇔ y > -2x + 1. Вернёмся к первому уравнению:
В первом уравнении сделаем замену |x| + |y| = t.
По теореме Виета
Получаем
Третье уравнение — уравнение окружности с центром (0; 0) и радиусом 4. Первые два уравнения — уравнения квадратов с центром в точке (0; 0), наклонённых на 45° и диагоналями 6 и 10: действительно, если раскрыть модуль y, а всё без y перенести в правую сторону, то при y ≥ 0 y = -|x| + 3, при y < 0 y = |x| - 3. Аналогично с |x| + |y| = 5.
Учтём ограничение y > -2x + 1: нам подохдят все y, что выше прямой -2x + 1. Всё вместе это выглядит, как на первой картинке. Теперь нужно обрезать всё, что не попадает в синюю область (см. вторую картинку).
Для выполнения второго задания вычислим точки пересечения квадратов и окружности с прямой y = -2x + 1, а также точки пересечения окружности и большого квадрата.
При x < 0:
При 0 ≤ x < 0,5: — не подходит
При x ≥ 0,5:
При x < 0:
При 0 ≤ x < 0,5: — не подходит
При x ≥ 0,5:
Решим первое уравнение:
Прямая y = px - 1 — прямая, проходящая через точку (0; -1). Действительно, если подставить x = 0, вне зависимости от параметра p при данном x y = -1. p регулирует наклон прямой. Будем вращать прямую около точки (0; -1) и отмечать промежутки (красным), где прямая "начинает" и "заканчивает" иметь две общие точки (см. третью картинку).
На рисунке отмечены все промежутки и частные случаи, когда прямая имеет две общие точки. Выразим p через x и y:
Для
Для
Для
Для
Для
Для
Для
Для
Итого
В решении.
Объяснение:
Решить систему уравнений:
а)х/3+у/4-5=0
2х-у=10
Умножить первое уравнение на 12, чтобы избавиться от дроби:
4х+3у-60=0
2х-у=10
Выразить у через х во втором уравнении, подставить выражение в первое уравнение и вычислить х:
-у=10-2х
у=2х-10
4х+3(2х-10)-60=0
4х+6х-30-60=0
10х=90
х=9
у=2*9-10
у=8
Решение системы уравнений (9; 8);
б)2х-7у=4
х/6-у/6=0
Умножить второе уравнение на 6, чтобы избавиться от дроби:
2х-7у=4
х-у=0
Выразить х через у во втором уравнении, подставить выражение в первое уравнение и вычислить у:
х=у
2у-7у=4
-5у=4
у= -0,8
х= -0,8
Решение системы уравнений (-0,8; -0,8);
в)2х/3-у/2=0
3(х-1)-9=1-у
Умножить первое уравнение на 6, чтобы избавиться от дроби:
4х-3у=0
3х-3-9-1+у=0 3х+у=13
Выразить у через х во втором уравнении, подставить выражение в первое уравнение и вычислить х:
у=13-3х
4х-3(13-3х)=0
4х-39+9х=0
13х=39
х=3
у=13-3*3
у=4
Решение системы уравнений (3; 4);
г)5х/6-у= -5/6
2х/3+3у= -2/3
Умножить первое уравнение на 6, второе на 3, чтобы избавиться от дроби:
5х-6у= -5
2х+9у= -2
Разделить второе уравнение на 2 для упрощения:
5х-6у= -5
х+4,5у= -1
Выразить х через у во втором уравнении, подставить выражение в первое уравнение и вычислить у:
х= -1-4,5у
5(-1-4,5у)-6у= -5
-5-22,5у-6у= -5
-28,5у=0
у=0
х= -1
Решение системы уравнений (-1; 0).
2) ( с + 1 )^2 / ( с - 1 ) • ( 1 / ( с + 1 )) = ( с + 1 ) / ( с - 1 )
ответ ( с + 1 ) / ( с - 1 )