ответ:Объем тела, полученного вращением относительно оси абсцисс дуги кривой
y=f(x) , a<=x<=b, вычисляется по формуле
b
V = π ∫ (f(x))^2 dx
a
В данном случае
1
V1 = π ∫ (x^2+1)^2 dx =
0
1 1
= π ∫(x^4 + 2 * x^2 + 1) dx = π (x^5/5 + 2*x^3/3 + x) I =
0 0
= π (1/5 + 2/3 + 1) - 0 = 28 * π/15
4 4 4
V2 = π ∫ (Vx)^2 dx = π ∫ x dx = π * x^2/2 I = π * (4^2/2 -1^2/2) = 7,5 * π
Для того, чтобы найти сумму первых двадцати членов арифметической прогрессии заданной формулой n - го члена прогрессии an = 3n + 2 прежде всего вспомним формулу для нахождения суммы n первых членов арифметической прогрессии.
Sn= (a1 + an)/2 * n.
Из заданной формулы найдем первый и двадцатый член арифметической прогрессии:
a1 = 3 * 1 + 2 = 3 + 2 = 5;
a20 = 3 * 20 + 2 = 60 + 2 = 62.
Теперь можем подставить найденные значения в формулу для нахождения суммы и произвести вычисления.
S20= (a1 + a20)/2 * 20 = (5 + 62)/2 * 20 = 67/2 * 20 = 67 * 10= 670.
Объяснение:
N=10*√9-30+5√5-5√5= 10*3-30=30-30= 0