2^x=a
(a²-8a+7)/(a²-5a+4)≤(a-9)/(a-4) +1/(a+6)
a²-8a+7=(a-1)(a-7)
a1+a2=8 U a1*a2=7⇒a1=1 U a2=7
a²-5a+4=(a-1)(a-4)
a1+a2=5 U a18a2=4⇒a1=1 U a2=4
(a-1)(a-7)/[(a-1)(a+4)≤(a-9)/(a-4) +1/(a+6)
(a-7)/(a-4)-(a-9)/(a-4) -1/(a+6)≤0, a≠1
[(a-7)(a+6)-(a-9)(a+6)-(a-4)]/[(a-4)(a+6)]≤0
[(a+6)(a-7-a+9)-(a-4)]/[(a-4)(a+6)]≤0
(2a+12-a+4)/[(a-4)(a+6)]≤0
(a+16)/[(a-4)(a+6)]≤0
a=-16 a=4 a=-6
_ + _ _ +
[-16](-6)(-1)(4)
a≤-16⇒2^x≤-16 нет решения
-6<a<-1⇒-6<2^x<-1 нет решения
-1<a<4⇒-1<2^x<4⇒x<2
x∈(-∞;2)
Когда Вася отдаёт Пете монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на монет меньше изначального, а у Пети на монет больше изначального. А значит, вначале у Васи было на монет больше, чем у Пети.
Путь у Васи вначале монет. Тогда у Пети монет.
В первом случае всё как раз получается правильно:
Во втором случае у Васи-II оказывается монет, а у Пети-II будет монет. При этом у Пети-II монет в раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:
Далее это целочисленное уравнение можно решить двумя
[[[ 1-ый
Чтобы было целым, целой должен быть и результат деления в дроби, а чтобы было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда откуда:
[[[ 2-ой
Чтобы было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет откуда:
О т в е т :