Если прямая проходит через точку, то её координаты удовлетворяют уравнению прямой.
Другими словами, если подставить координаты точки, через которую проходит прямая, в уравнение прямой, мы получим верное равенство.
2х-у=4
А (0; 4)
х=0, у=4
2*0-4 = -4
-4 ≠ 4
Равенство неверное.
Вывод: прямая 2х-у=4 не проходит через точку А (0; 4).
В (2; 0)
х=2, у=0
2*2-0 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку В (2; 0).
С (-3; -10)
х= -3, у= -10
2*(-3)-(-10) = -6+10 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку С (-3; -10).
ответ: прямая проходит через точки В и С.
y' = 3x^2 - 3
Соответственно,
y' = 0 при x^2 = +- 1
y' < 0 при -1 < x < 1 - на этом интервале функция y убывает
y' > 0 при |x| > 1 - возрастает
То есть, функция y = x^3 - 3x
сначала возрастает до x = -1 {y(-1) = -1 + 3 = 2}
в точке (-1, 2) имеет локальный максимум
далее убывает до x = 1 {y(1) = 1 - 3 = -2}
локальный минимум в точке (1, -2)
далее возрастает
получается, что прямая y = a будет иметь с данной функцией
3 пересечения при -2 < a < 2 (пересекает все три участка возрастания/убывания)
2 пересечения при a = +-2 (пересекает один из участков и проходит через одну точку локального максимума/минимума)
1 пересечение при |a| > 2
Т.е. искомые значения параметра: |a| > 2