Запишите многочлен 4- ой степени, корнями которого являются числа :
если число а-корень уравнения то х-а=0
воспользовавшись этим свойством составим уравнения
1) - 2,0,2,3
(x+2)(x-0)(x-2)(x-3)=0
x(x-2)(x+2)(x-3)=0
x(x²-4)(x-3)=0
(x²-4)(x²-3x)=0
перемножим скобки
x⁴-4x²-3x³+12x=0
приведем к стандартному виду
x⁴-3x³-4x²+12x=0
2) - 3,-1,1,3
(x+3)(x+1)(x-1)(x-3)=0
(x²-9)(x²-1)=0
x⁴-9x²-x²+9=0
x⁴-10x²+9=0
3) - 3,-1,0,3
(x+3)(x+1)(x-0)(x-3)=0
(x²-9)*x*(x+1)=0
(x²-9)(x²+x)=0
x⁴-9x²+x³-9x=0
x⁴+x³-9x²-9x=0
4) -2,1,2,5
(x+2)(x-1)(x-2)(x-5)=0
(x²-4)(x-1)(x-5)=0
(x²-4)(x²-6x+5)=0
x⁴-4x²-6x³+24x+5x²-20=0
x⁴-6x³+x²+24x-20=0
Пусть S-сумма цифр в первой строке. Тогда сумма во второй строке равна S+1, a сумма в третьей равна S+2.
Пусть К-сумма цифр в первом столбце, тогда 4К - сумма во втором столбце и 16К - сумма в третьем столбце.
Сумма чисел в таблице неизменна, поэтому составим уравнение.
S+S+1+S+2=K+4K+16K
3S+3=21K делим обе части уравнения на три
S+1=7K
напоминаю, что S+1 это сумма цифр во второй строке. Мы видим, что она равна произведению семи и какого-то числа. Соответственно, она кратна семи, что и требовалось доказать.