Объяснение:
udv + vdu или udv = d(uv) - vdu.
Для выражения d(uv) первообразной, очевидно, будет uv, поэтому имеет место формула:
∫ udv = uv - ∫ vdu (8.4.)
Эта формула выражает правило интегрирования по частям. Оно приводит интегрирование выражения udv=uv'dx к интегрированию выражения vdu=vu'dx.
Пусть, например, требуется найти ∫xcosx dx. Положим u = x, dv = cosxdx, так что du=dx, v=sinx. Тогда
∫xcosxdx = ∫x d(sin x) = x sin x - ∫sin x dx = x sin x + cosx + C.
Правило интегрирования по частям имеет более ограниченную область применения, чем замена переменной. Но
Смотря что подразумевается под внешним углом:
Если это угол между стороной и вектором соседней стороны, то 60°
Если между двумя сторонами, то 360°-120°(внутренний угол между соседними сторонами),то =240°
Объяснение:
Найдем внутренний угол путем наложение векторов через общий центр к углам. Получаем шесть равносторонних треугольников с углами по 60°. внутренний угол будет сумма двух прилегающих углов треугольников(120°), а внешний соответственно(240°).
Если нам нужен внешний угол у стороны, то продолжим векторы сторон и увидим тоже самое, внешние равносторонние треугольники с углами по 60°.