В таблице.
Объяснение:
Заполнить таблицу:
a b c
4х²+5х-4=0 4 5 -4 Полное квадратное уравнение
-6х²+х+3=0 -6 1 3 Полное квадратное уравнение
15х-х²=0 -1 15 0 Неполное квадратное уравнение
7х²=0 7 0 0 Неполное квадратное уравнение
3х-х²+19=0 -1 3 19 Полное квадратное уравнение
2х²-14=0 2 0 -14 Неполное квадратное уравнение
2/3 х²-2х=0 2/3 -2 0 Неполное квадратное уравнение
х²+2-х=0 1 -1 2 Полное квадратное уравнение
1)Определение. Первообразной для функции f называется такая функция F, производная которой равна данной функции.
2)Если F1 и F2 – две первообразные для одной и той же функции f, то они отличаются на постоянное слагаемое. ... Функция, производная которой тождественно равна нулю, является постоянной. Итак, F1 – F2 = С. Таким образом, все первообразные для функции f получаются из одной из них прибавлением к ней произвольной постоянной.
3)совокупность первообразных функции и называется непределенным интегралом от функции . Совокупность всех первообразных функции называется неопределенным интегралом от и обозначается символическим выражением , которое читается "интеграл от эф от икс по дэ икс".
4) Знак интеграла (∫) используется для обозначения интеграла в математике.
5)Множество всех первообразных F(x)+C функции f(x) называется неопределенным интегралом функции f(x) и обозначается . Символ называется интегралом, f(x) называется подынтегральной функцией, f(x)dx называется подынтегральным выражением, x называется переменной интегрирования.
6)Подынтегральное выражение представляет собой дифференциал функции f(x). Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.
7)Если – одна из первообразных некоторой функции , то совокупность всех первообразных этой функции можно представить в виде , где C – произвольная постоянная. Функция, имеющая первообразную в некотором промежутке, называется интегрируемой, а процедуру нахождения первообразной называют интегрированием этой функции.
8)Неопределенный интеграл его свойства. ... Множество всех первообразных некоторой функции f(x) называется неопределенным интегралом функции f(x) и обозначается как ∫f(x)dx. Таким образом, если F - некоторая частная первообразная, то справедливо выражение ∫f(x)dx=F(x)+C, где C - произвольная постоянная.
9)Метод интегрирования, при котором интеграл с тождественных преобразований подынтегральной функции и применения свойств интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием.
10)Геометрически определённый интеграл выражает площадь «криволинейной трапеции», ограниченной графиком функции[⇨].
11)Формула Ньютона-Лейбница - даёт соотношение между операциями взятия определенного интеграла и вычисления первообразной. Формула Ньютона-Лейбница - основная формула интегрального исчисления. Данная формула верна для любой функции f(x), непрерывной на отрезке [а, b], F - первообразная для f(x).
12)Криволинейная трапеция – плоская фигура, ограниченная графиком неотрицательной непрерывной функции у = f(x), определенной на отрезке [a; b], осью абсцисс и прямыми х = а, х = b – см. рис.
Решение:
20 < 4a < 50 | : 4
5 < a < 12,5 | * (-1)
-5 > -a > -12,5
или
-12,5 < -a < -5 | + 1/2
-12 < -a + 1/2 < -4,5
б) -2,4 < 6a < 15 в каких пределах - a+1/2 ?
Решение:
-2,4 < 6a < 15 | : 6
-0, 4 < a < 2,5 | * (-1)
0,4 > -a > -2,5
или
-2,5 < -a < 0,4 | + 1/2
-2 < 1/2 - a < 0,9