Данное двойное неравенство равносильно системе двух квадратных неравенств:

Первое неравенство
.
Заметим, что в левой части скрывается квадрат разности (формула
):
.
Неравенство принимает следующий вид:
.
Так как квадрат числа всегда неотрицательный, то нам не подходит всего лишь один случай:
и
.
Значит, первой неравенство эквивалентно тому, что
.
Второе неравенство
.
Вс уравнение
имеет по теореме Виета (утверждающей, что
и
) корни
и
.
Из этого следует разложение левой части на множители:
.
Метод интервалов подсказывает решение
.
+ + + - - - + + +
_________
_________
_________
\\\\\\\\\\\\\\\\\\\\\
Значит, второе неравенство равносильно тому, что
.
Имеем значительно более простую систему неравенств:

Вполне понятно, что ее решением является
(как пересечения двух промежутков).
Или же
.
Задача решена!
ответ:
X^2 + ( X - 12 )^2 = 36
X^2 + x^2 - 24x + 144 - 36 = 0
2x^2 - 24x + 108 = 0
2( x^2 - 12x + 54 ) = 0
D = 144 - 216 = - 72
D < 0
Нет решений
И указанная прямая не пересекается с указанной окружностью