1) найдите площадь квадрата со стороной: а)0,9см; б)320мм; в)2/7дм; г)а см; 2) найдите стороны квадрата, если его площадь равна: а)144см2; б)0,04см2; в)1 целая7/9дм2; г)s м2; л)10см2 ( 2- это квадрат)
В №1 при подстановке значения у из первого уравнения во второе получим х(а-3)=2. Следовательно (а-3) не=0. а не=3. При а=3 нет решений. Единственное решение при любых а, кроме а не=3. №2. Преобразуем каждое уравнение, т.е. избавимся от знаменателей. В первом уравнении правую часть умножим на 10, а во втором левую часть умножим на 3, а в правой первое и второе слагаемые соответственно умножим на 4 и 3 Тогда получим после перенесения всех неизвестных в левую часть, а чисел в правую { 2x+90y=276 4x+9e=39 Поделим обе части первого уравнения на 2, а обе части второго умножим на 5. Получим { x+45y=138 20x+45y=195 Вычтем из второго уравнения первое и получаем 19х=57 х=19 далее находим у.
ответ. В каждом размере либо левых и правых поровну, либо каких-то больше. Если левых и правых поровну, то их по 50 – вот мы и нашли 50 годных пар. Пусть в каждом размере или левых или правых больше. Можно считать, что в двух размерах больше левых, а в еще одном больше правых. (Во всех трех размерах левых быть больше не может, так как всего левых и правых сапог поровну). Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50.
а)S=0,9²=0,81 см²
б)320 мм=32 см S=32²=1024 см²
в)S=(2/7)²=4/49 дм²
г)S=а² см²
2)а=√S
а)а=√144=12см
б)а=√0,04=0,2см
в)а=√1 7/9=√16/9=4/3=1 1/3дм
г)а=√S м
д)а=√10 cм ≈ 3,16 см