1.
1)
38² - 64 = 38² - 8² = (38 - 8)(38 +8) = 30 * 46 = 1380,
2.
1)
2в² - 18 = 2 * (в² - 9) = 2 * (в - 3)(в + 3),
3)
81х² - 18ху + у² + 63х - 7у = (81х² - 18ху + у²) + (63х - 7у) =
= (9х - у)² + 7*(9х - у) = (9х - у)(9х - у + 7),
4)
m² + n² + 2mn = (m + n)².
3.
а)
(8 - 2n)(8 + 2n) + (9 + 2n)² - 64 = 64 - 4n² + 81 + 36n + 4n² - 64 =
= 36n + 81 = 9(4n + 9),
б)
(3х - 8)² + (4х - 8)(4х + 8) = 9х² - 48х + 64 + 16х² - 64 = 25х² - 48х,
при х=-2:
25 * (-2)² - 48 * (-2) = 100 + 96 = 196,
4.
1 число - х,
2 число - (х+2),
(х+2)² - х² = 188,
х² + 4х + 4 - х² = 188,
4х = 184,
х = 46 - 1 число,
х+2 = 46+2 = 48 - 2 число
треугольник, образованный основанием и отрезками биссектрис от вершины до точки пересечения тоже равнобедренный. углы при основании в нем будут по 64:2=32 градуса. значит полный угол при основании в большем треугольнике 64 градуса. тогда при вершине 180-64*2=180-128=52 градуса
Если биссектрисы равных углов, то эти равные углы: 2*(180 - 100)/2 = 80. Углы: 80;80;20. Если же биссектрисы неравных углов, то если равные углы по x, то третий угол 180 - 2x. 180 - 100 = (180 -2x)/2 + x/2 = 90 - x/2; 80 = 90 - x/2; x = 20. Углы: 20,20,140. 2 решения
Объяснение:
Два решения вверху