1. пусть х-кол-во денег, оставшихся у первого, тогда х/2-кол-во оставшихся денег у второго.
Составим уравнение:
х+х/2+26+60=140
1,5х=54
х=54/1,5=36р.
2. 36+26=62-кол-во денег первого
3.140-62=78-кол-во денег второго
2.пусть х-кол-во учашихся первой группы, то: 0,8х-кол-во оставшихся первой группы.
50-х-кол=во учащихся 2 группы, 1,4(50-х)-кол-во оставшихся во 2 группе.
Составим уравнение:
1,4(50-х)-0,8х=4
70-1,4х-0,8х=4
2,2х=70-4
2,2 х=66
х=66/2,2=30- кол-во учащихся 1 группы
2. 50-30=20-кол-во учащихся 2 группы
3. 3+2=5 кг-всего
(2/5)*100%=40%-столько сост. карамель от получ. смеси
Это парабола y=x^2+4x. При у=0 получаем x^2+4*x=0, x(1)=0, x(2)=-4. При этих значениях парабола пересекает ось Х. По этим данным уже можно построить параболу. Ось параболы - прямая, параллельная оси У, проходит через точку (-2;0).
А вообще, методика такая:
Выделяется полный квадрат, вида у=(х-а)^2+b.
Для этого берется формула (x+a)^2 или (x-a)^2, знак зависит от знака члена с первой степенью х, в данном случае +4, значит берем формулу с плюсом, и развертываем ее:
(x+a)^2=x^2+2*x*a+a^2.
Сопоставляем члены с первой степенью х в развернутой формуле и в исходной функции.
Видим, что 2*х*а=4*х, значит а=2.
К исходной формуле добавляем a^2, а чтобы значение не изменилось, вычитаем a^2.
y=x^2+4x+2^2-2^2
y=(x^2+2*x*2+2^2)-4
y=(x+2)^2-4
Из полученного выражения определяем, что ось параболы проходит через точку (-2;0) (-2 получается из выражения (х+2)^2, берем с противоположным знаком).
Свободный член (-4) означает, что минимальное значение у=-4, то есть вершина параболы находится на оси параболы в точке (-2;-4).
Легко запомнить 0^2=0, (+-1)^2=1, (+-2)^2=4, (+-3)^2=9, остальные значения обычно не требуются.
Строишь по этим значениям параболу с вершиной в начале координат, затем смещаешь ее влево или вправо, вверх или вниз на нужное число единиц. В данной задаче на 2 клетки влево и на 4 клетки вниз
45 с недостатком