1. Количество возможных комбинаций, которые могут получиться в результате трех бросков = 2^3 = 8.
Орел не выпадет ни разу - единственная комбинация (три раза выпадает решка).
Значит, вероятность = 1/8 = 0.125.
2. V детали = V воды с деталью - V воды.
V детали = 6*2.1 - 6 = 12.6 - 6 = 6.6
3. Пусть a1 - сторона первого квадрата, d1 - его диагональ, a2 и d2 - соответственно сторона и диагональ второго квадрата, a3 и d3 - третьего (площадь которого равна разности площадей первых двух).
d3 - ?
d3^2 = 2a3^2.
Выразим площади квадратов через их стороны:
a3^2 = a2^2 - a1^2.
Найдем значение выражения a2^2 - a1^2.
2a1^2 = 60^2 => a1^2 = 60^2/2,
2a2^2 = 68^2 => a2^2 = 68^2/2.
Тогда a3^2 = 68^2/2 - 60^2/2 = (68^2-60^2)/2 = ( (68-60)(68+60) ) / 2 = 512.
d3^2 = 2*512 = 1024.
d3 = √1024 = 32.
ответ: 32.
1. Количество возможных комбинаций, которые могут получиться в результате трех бросков = 2^3 = 8.
Орел не выпадет ни разу - единственная комбинация (три раза выпадает решка).
Значит, вероятность = 1/8 = 0.125.
2. V детали = V воды с деталью - V воды.
V детали = 6*2.1 - 6 = 12.6 - 6 = 6.6
3. Пусть a1 - сторона первого квадрата, d1 - его диагональ, a2 и d2 - соответственно сторона и диагональ второго квадрата, a3 и d3 - третьего (площадь которого равна разности площадей первых двух).
d3 - ?
d3^2 = 2a3^2.
Выразим площади квадратов через их стороны:
a3^2 = a2^2 - a1^2.
Найдем значение выражения a2^2 - a1^2.
2a1^2 = 60^2 => a1^2 = 60^2/2,
2a2^2 = 68^2 => a2^2 = 68^2/2.
Тогда a3^2 = 68^2/2 - 60^2/2 = (68^2-60^2)/2 = ( (68-60)(68+60) ) / 2 = 512.
d3^2 = 2*512 = 1024.
d3 = √1024 = 32.
ответ: 32.
a+(a+d)+a+2d)=0
a+(a+d)+(a+2d)+(a+3d)=1
3a+3d=0
4a+6d=1
a=(1-6d)/4
3(1-6d)/4+3d=0
6d=3
d=1/2
a=(1-6d)/4=(1-3)/4=-1/2
s=(2a+d(n-1)/2)*n=(2*(-1/2)+(1/2)(10-1))/2*10=17,5