Как-то кривенько все получается, либо приблизительно, либо с корнями...
Ну смотрите сами.
1. А+В = 5
А*В = -2
Выражаем А через В
А = (5-В) и подставляем во второе выражение
(5-В)* В = -2, раскрываем скобки и получаем кв. уравнение
В в кв - 5В - 2= 0, по формуле находим корни В1 В2
В1 = ( 5- кв корень(25+8)):2 = 2.5 - кв корень(33)/2
В2 = ( 5 + кв корень(25+8))/2 = 2.5 + кв корень(33)/2
Потом находим А1 и А2
А1 = 5 - (2.5 - кв корень(33)/2) = 2.5 + кв корень (33)/2
А2 = 5 - (2.5 + кв корень(33)/ 2) = 2,5 - кв корень(33)/2
Теперь ищем (А-В) в кв (А1-В1) и (А2-В2)
1. ((2.5+кв к(33)/2)-(2.5-кв.к(33)/2)в кв =( кв к(33))в кв = 33
2. ((2.5-кв к(33)/2)- (2,5+кв к(33)/2)в кв = (-кв к(33))в кв = 33
Проверьте, может где-то перемудрила, но основная мысль такова.
Удачи!
Обозначаем вместимость бассейна как условное число 1.
Поскольку оба насоса наполняют бассейн за 4 часа, то их общая скорость наполнения будет равна:
1 / 4 = 1/4 часть бассейна в час.
Скорость наполнения первого насоса составит:
1 / 12 = 1/12 часть бассейна в час.
Определяем скорость наполнения второго насоса.
Для этого от общей продуктивности работы отнимаем скорость работы второго насоса.
1/4 - 1/12 = 3/12 - 1/12 = 2/12 = 1/6 часть в час.
Значит он наполнит бассейн за:
1 / 1/6 = 1 * 6/1 = 6 часов.
6 ч.
Объяснение:
2) x²y /yx =x