Дано:
а₁ = а₂ + 3 см
S₁ = S₂ + 39 см²
Р₁ = ? см
Р₂ = ? см
Пусть сторона второго квадрата а₂= х см, тогда сторона первого квадрата равна а₁ =а ₂ + 3 = х + 3 см.
Площадь квадрата равна S=a², значит площадь первого квадрата равна S₁=(х+3)², а площадь второго квадрата равна S₂= х². Площадь первого квадрата больше второго на 39 см².
Составим и решим уравнение:
(х+3)²- х² = 39
х² + 6х + 9 - х² = 39
6x = 39 - 9
x = 30:6
х= 5 (см) - сторона второго квадрата (а₁).
х+5 = 5 + 3 = 8 (см) - сторона первого квадрата (а₂).
1.в
2.в
3.в
4.б
5.б
6.а
7.а) x1=0; x2=6; б) x1=-0,4; x2=0,4;
8.(2x+9)*(x-1)=0
x1= -4.5; x2= 1;
9. x^2-5x+4
10. (3x+1)^2=4x^2+5x-1
5x^2+5x+2=0
дискриминант отрицательный.
11. x1=-4; x2=-3; x3=3; x4=4;
12. За т. Вієта сума коренів квадратного рівняння дорівнює другому коефіцієнтові, взятому із протилежним знаком (тобто, x_1+x_2=14)
Формулу x_1^2+x_2^2 можна представити як (x_1+x_2)^2-2x_1*x_2, але для цього ми маємо знати ще добуток коренів.
Добуток коренів (знову-таки за т. Вієта) дорівнює третьому коефіцієнтові (тобто, x_1*x_2=5)
Підставимо значення у формулу: (x_1+x_2)^2-2*x_1*x_2=14^2-2*5=196-10=186
4а"(5с"2д0