№ 2:
при каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0< а< 4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а> 4 - 2 корня (от исходной параболы)
ответ: 4
Замена:
Имеем квадратичную функцию , графиком которой является парабола с ветвями, направленными вверх.
Найдем возможные точки пересечения параболы с осью абсцисс.
Для этого решим квадратное уравнение:
Найдем дискриминант данного уравнения:
Имеем , значит данное уравнение имеет ровно 2 корня:
Имеем две точки пересечения параболы с осью абсцисс.
Пусть . Тогда
. Имеем неверное неравенство. Следовательно, при всех значениях параметра
имеем
.
Тогда квадратичная функция будет меньше 0 при
Последнее можно записать так:
Обратная замена:
Если , то имеем:
Решением такой системы неравенств является
Если , то имеем:
Решением такой системы неравенств является
Если , то имеем:
Решением такой системы неравенств является интервал