1. A) Выразим х из первого уравнения системы и подставим во второе: х=3+у 3(3+у)+у=5 9+3у+у=5 4у=-4 у=-1 Подставим найденное значение у в выраженное нами значение х: х=3+у=3+(-1)=3-1=2
Проверим верность вычислений: 2-(-1)=2+1=3 - верно. 3*2+(-1)=6-1=5 - верно. х=2, у=-1. Б) Выразим у из первого уравнения системы и подставим во второе: у=4-х² 2*(4-х²)-х=7 8-2х²-х=7 2х²+х-1=0 Д=1+8=9 х1=(-1+3):4=1/2 х2=(-1-3):4=-1 у=4-х² При х1=1/2, у1=4-1/4=3 целых 3/4 При х2=-1, у2=4-(-1)²=4-1=3
х1=1/2, у1=3 целых 3/4; х2=-1, у2=3.
2.Подставим нашу точку (4;-2) в данные уравнения. Если в обоих уравнениях получится тождество, то эта пара чисел является решением системы, в противном случае-нет. На первом месте всегда стоит х, а на втором - у (если не оговорено в условиях другое). Подставляем: 4+(-2)=2 4-2=2 2=2 - верно
4=-2, но 4≠-2. Второе условие не соответствует - пара чисел (4;-2) - не является решением для данной системы уравнений.
Произведение двух множителей ≤0,тогда и только тогда, когда множители имеют разные знаки. Решаем две системы решение системы предполагает рассмотрение двух случаев а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≥0; 5x-9>1; х²-4х+5≤1; х²-4х+5>0. Решение каждого неравенства системы: х≤20/11 х>1,8 х=2 х- любое О т в е т. 1а) система не имеет решений. б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≥0 0<5x-9<1 х²-4х+5≥1 х²-4х+5>0 Решение х≤20/11 0<х<1,8 х-любое (так как х²-4х+4≥0 при любом х) х- любое Решение системы 1б) 0<x<1,8, так как (20/11) >1,8 О т в е т. 1)0<x<1,8
решение системы также предполагает рассмотрение двух случаев а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≤0 5x-9>1 х²-4х+5≥1 х²-4х+5>0 Решение х≥20/11 х>1,8 х-любое х- любое О т в е т. 2 а) х≥20/11.
б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств: 20-11х≤0 0<5x-9<1 х²-4х+5≤1 х²-4х+5>0 Решение х≥20/11 0<х<1,8 х=2 х- любое Решение системы 2б) нет решений О т в е т. 2) х≥20/11
О т в е т. 0 < x < 1,8 ; x≥20/11 или х∈(0;1,8)U(1целая 9/11;+∞)
(1\13-2 3\4)*26=1/13-11/4=((1*4-11*13)/52)*26=139/52*26=139/2=69,5
6\5:4\11=(6*11)/5*4=33/10=3,3
1+1/2=1 1/2