В параллелограмме АВСD противоположные углы равны (∠А=∠С и ∠В=∠D), а смежные в сумме дают 180° (∠А+∠В=180° ; ∠B+∠C=180° ; ∠C+∠D=180° и ∠D+∠A=180°) составляем систему:
Существует. Будем считать с 00 года до 99. Календарь полностью повторяется через 28 лет. Если 1 января 00 года была среда, то и 28, и 56 и 84 тоже среда. Внутри этих 28 лет каждый день недели бывает по 4 раза. Теперь рассмотрим последние 16 лет в столетии. 1.01.85 чт, в 86 пт, в 87 сб, в 88 вс. 88 год високосный, поэтому следующее 1 января будет через 2 дня. В 89 году вт, в 90 ср, в 91 чт, в 92 пт, в 93 вс, в 94 пн, в 95 вт, в 96 ср, в 97 пт, в 98 сб, в 99 вс. В итоге за первые 84 года каждый день недели был по 3*4=12 раз. В последние 16 лет было по 2 вторника среды, четверга и субботы, и по 3 пятницы и воскресенья. И только 1 понедельник, что нам и нужно.
Наибольшее число попыток - это когда нужно перебрать ВСЕ возможные варианты (комбинации). 1. Количество всех возможных вариантов набора = 10^4 = 10000. Я поясню почему так: четыре позиции, каждая позиция может принимать 10 возможных значений (цифры от 0 до 9 - десять цифр). Для одной позиции = 10 вариантов. Для двух позиций: для каждого из десяти вариантов первой позиции есть десять вариантов второй позиции, всего = 10*10 = 100. Для трех позиций: для каждого из 100 вариантов первых двух позиций есть еще 10 вариантов третьей позиции, всего = 100*10 = 1000 вариантов. Для четырех: для каждого из 1000 вариантов первых трех позиций есть 10 вариантов четвертой позиции, то есть всего = 1000*10 = 10000 вариантов. 2. Аналогично первому: есть две позиции, каждая позиция может принимать 10 значений (цифры от 0 до 9 - десять цифр). Для одной позиции = 10 вариантов. Для двух позиций: каждому варианту для первой позиции соответствует еще 10 вариантов второй позиции, всего 10*10 = 100 вариантов (комбинаций).
составляем систему:
∠А+∠В=180°
∠А-∠В=55°
складываем первое уравнение со вторым
2∠А=235°
∠А=235°/2=117,5°
∠А-∠В=55°
∠В=∠А-55°=117,5°-55°=62,5°
ОТВЕТ: ∠А=∠С=117.5°; ∠B=∠D=62.5°