М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
AlinaRoz
AlinaRoz
10.06.2021 05:05 •  Алгебра

Выразите b через a и c из формулы 1/a+1/b=1/с

👇
Ответ:
Teroristka123
Teroristka123
10.06.2021
1/a + 1/b = 1/c
1/b = 1/c - 1/a
1/b = ( a - c )/ ca
b = 1 / [ ( a - c )/ca ] = ca / ( a - c )
ответ са / ( а - с )
4,5(19 оценок)
Открыть все ответы
Ответ:
ratmir2rat
ratmir2rat
10.06.2021

\frac{2cos(x)+sin^2(x)}{ctg(x)-sin(2x)} =tg(2x)\\\frac{2cos(x)+sin^2(x)}{\frac{cos(x)}{sin(x)} -sin(2x)} =\frac{sin(2x)}{cos(2x)} \\\frac{2cos(x)+sin^2(x)}{\frac{cos(x)-sin(x)sin(2x)}{sin(x)} } =\frac{sin(2x)}{cos(2x)} \\\frac{sin(2x)+sin^3(x)}{cos(x)-sin(x)sin(2x)} -\frac{sin(x)}{cos(x)} =0\\\frac{2sin(x)cos(x)+sin^3(x)}{\sqrt{1-sin^2(x)}-sin(x)*2sin(x)cos(x)} -\frac{sin(x)}{\sqrt{1-sin^2(x)}} =0\\ \frac{2sin(x)\sqrt{1-sin^2(x)}+sin^3(x)}{\sqrt{1-sin^2(x)}-sin(x)*2sin(x)\sqrt{1-sin^2(x)}} -\frac{sin(x)}{\sqrt{1-sin^2(x)}} =0\\sin(x)=t,-1\leq t\leq 1\\\frac{2t*\sqrt{1-t^2}+t^3}{\sqrt{1-t^2}-t*2t\sqrt{1-t^2}} -\frac{t}{\sqrt{1-t^2}} =0\\\frac{2t\sqrt{1-t^2}+t^3-t(1-t*2t)}{\sqrt{1-t^2}(1-t*2t)} =0 \\\sqrt{1-t^2} (1-t*2t)\neq 0\\\sqrt{1-t^2}\neq0\\x\neq1\\t\neq-1\\1-2x^2\neq0\\t\neq\frac{\sqrt{2}}{2}\\t\neq-\frac{\sqrt{2}}{2} \\ \sqrt{1-t^2} \geq 0\\-1\leq t\leq 1\\2t\sqrt{1-t^2} =-3t^3+t\\4t^2(1-t^2)=t^2-6t^4+9t^6\\3t^2+2t^4-9t^6=0\\t^2(3+2t^2-9t^4)=0\\t^2=0\\3+2t^2-9t^4=0\\t^2=y\\3+2y-9y^2=0\\9y^2-2y-3=0\\D_1=1+27=28\\y_1=\frac{1+\sqrt{28}}{9} \\y_2=\frac{1-\sqrt{28}}{9} \\t_2=\frac{\sqrt{1+\sqrt{28}}}{3} \\t_3=-\frac{\sqrt{1+\sqrt{28}}}{3} \\\frac{1-\sqrt{28}}{9} =(-0,5) ;5\frac{1-5,5}{9}=(-0,5)\\t_1=0\\t_2=\frac{\sqrt{1+5,5}}{3} =\frac{\sqrt{6,5}}{3} ;2

0,7 и -0,7 ∉ ОДЗ

t=0\\ [/tex] sin(x)=0\x=\pi k [/tex]

k∈Z

[/tex] ODZ:cos(x)cos(2x)-sin(x)sin(2x)cos(2x)\neq 0\\cos(2x)(cos(x)-sin(x)sin(2x))\neq 0\\cos(2x)\neq 0\\x\neq \frac{\pi}{4} +\frac{\pi k}{2} \\cos(x)-sin(x)sin(2x)\neq 0\\cos(x)-2sin^2(x)cos(x)\neq 0\\cos(x)(1-2sin^2(x))\neq =0\\cos(x)\neq 0\\x\neq \frac{\pi}{2} +\pi k\\1-2sin^2(x)=0\\cos(2x)\neq 0\\x\neq \frac{\pi}{4} +\frac{\pi k}{2} \\x\neq \left \{ {{\frac{\pi}{4}+\frac{\pi k}{2} } \atop {\frac{\pi}{2} }+\pi k} \right. [/tex]

Первое ОДЗ было сделано на t .Второе ОДЗ было сделано на x

ответ:x=πk,k∈Z

4,6(49 оценок)
Ответ:
спартак37
спартак37
10.06.2021
Производительность труда  I наборщицы  х  страниц в час ; 
производительность  II наборщицы  у стр./час
По условию задачи составим систему уравнений:
{ 8x  + 7y  = 171
{ 3y  -  x   =  29       ⇒  х = 3у - 29
8(3у  - 29)  +  7у = 171
24у - 232 +  7у  = 171
31у  - 232  = 171
31у = 171 + 232
31у  = 403
у = 403 : 31
у = 13 (стр./час)  производительность II наборщицы
х = 3*13  - 29 = 39 - 29
х = 10 (стр./час)  производительность I наборщицы

Проверим:
8 * 10   + 7 * 13 = 80 + 91 = 171 (стр.) текста - выполненный объем работы
3 *13  - 10 = 39  - 10  = 29 (стр.)

ответ:   10 страниц текста в час  готовила I наборщица, 13 страниц в час - II наборщица.
4,8(19 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ