Определить промежутки монотонности функции, не используя производную функции.
y = (x² - x - 20)² - 18
=================================
Область определения функции D (y) = R
y = (x² - x - 20)² - 18
Квадратичная функция в квадратичной функции
y = f(z); z = g(x)
Чтобы найти промежутки монотонности квадратичной функции, нужно найти абсциссу вершины параболы.
- координата вершины
z = 0 - координата вершины параболы
x₁ = -4; x₂ = 5 - координаты вершин параболы
Таким образом, есть три точки, которые определяют промежутки монотонности функции y = (x² - x - 20)² - 18.
x₁ = -4; x₀ = 0,5; x₂ = 5
x ∈ (-∞; -4] - функция убывает : y(-5) > y(-4)
x ∈ [-4; 0,5] - функция возрастает : y(-4) < y(0)
x ∈ [0,5; 5] - функция убывает : y(1) > y(2)
x ∈ [5; +∞) - функция возрастает : y(5) < y(6)
План-конспект урока
Алгебра
8 класс
Тема: Доказательство неравенств
Цель:
Образовательная: формирование умений доказательства неравенств, формирование
Этапы занятия:
Организационный момент.
Актуализация опорных занятий.
Усвоение новых знаний и действий.
Первичное закрепление знаний и действий.
Контроль и самопроверка знаний, рефлексия.
Подведение итогов занятий.
ХОД ЗАНЯТИЯ
1. Организационный момент. Подготовка учащихся к работе на занятии.
2. Подготовка к основному этапу. Обеспечение мотивации, значимости изучаемой темы занятия и принятия учащимися учебно-познавательной деятельности, актуализация опорных знаний.
а) С неравенств сравниваются большие и малые величины;
b) Во С какого приема мы умеем доказывать неравенство вида aответ:
- Один из приемов доказательства неравенства ab) сводят к доказательству равносильного ему неравенства a-b<0 (a-b>0);
c) Повторим данное доказательство на примере неравенства Коши.
“Среднее арифметическое неотрицательных чисел не меньше их среднего геометрического”:

Доказать: 
Доказательство: Рассмотрим разность левой и правой частей неравенства:

Неотрицательность квадрата любого вещественного числа очевидна.
Значит,  – верное неравенство.
3.
a) Во Попробуем сформулировать другой прием.
ответ (учитель ответить на во Другой прием состоит в том, чтобы показать, что данное неравенство является следствием некоторого очевидного неравенства:
(a-b)2  0, (a+b)2  0 или неравенства Коши  , при а0, b0, выражающее соотношение между средним арифметическим и средним геометрическим двух неотрицательных чисел;
b) Докажем, что (a+b)(ab+1)  4ab, при а0, b0.
Доказательство: Рассмотрим a+b и ab+1.
Используем очевидное неравенство Коши:

второго множителя.

Перемножим получившиеся неравенства:

с) Так же используют следующий прием: предполагают, что данное неравенство верно при заданных значениях переменных, строят цепочку неравенств-следствий, приводящую к некоторому очевидному неравенству. Рассматривая затем эту цепочку неравенств снизу вверх, показывают, что данное неравенство является следствием полученного очевидного неравенства и потому верно при указанных значениях переменных.
Значит, доказательство (a+b)·(ab+1)  4ab, при а0, b0 можно выполнить другим Допустим, что при а0, b0 данное неравенство верно, т.е.:

Используя неравенство Коши дважды для каждого множителя, имеем:

Значит, (a+b)·(ab+1)  4ab, при а0, b0, что и требовалось доказать.
4. Докажем: 
Доказательство: Допустим, что данное неравенство верно.

Получили очевидное неравенство.
Значит, данное неравенство  верно.
Во Мы можем привести доказательство данного неравенства из очевидного неравенства (a+b-2)2  0?
ответ: Да, для этого сделаем обратные шаги (рассказать по готовой записи)
Объяснение:
как то так, неуверен